Spaces:
Sleeping
Sleeping
import streamlit as st | |
import itertools as it | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
import numpy as np | |
from operator import itemgetter | |
# Sidebar for selecting an option | |
sidebar_option = st.sidebar.radio("Select an option", | |
["Select an option", "Basic: Properties", | |
"Basic: Read and write graphs", "Basic: Simple graph", | |
"Basic: Simple graph Directed", "Drawing: Custom Node Position", | |
"Drawing: Cluster Layout", "Drawing: Degree Analysis", | |
"Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids", | |
"Drawing: House With Colors", "Drawing: Labels And Colors", | |
"Drawing: Multipartite Layout", "Drawing: Node Colormap"]) | |
# Helper function to draw and display graph | |
def draw_graph(G, pos=None, title="Graph Visualization"): | |
plt.figure(figsize=(8, 6)) | |
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold') | |
st.pyplot(plt) | |
# Function to display Drawing: Node Colormap | |
def display_node_colormap(): | |
st.title("Drawing: Node Colormap") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.cycle_graph(24) | |
pos = nx.circular_layout(G) | |
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues) | |
st.pyplot(plt) | |
elif option == "Create your own": | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24) | |
color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues')) | |
if st.button("Generate Graph"): | |
# Create cycle graph with custom number of nodes | |
G_custom = nx.cycle_graph(num_nodes) | |
pos = nx.circular_layout(G_custom) | |
nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map)) | |
st.pyplot(plt) | |
# Display Drawing: Node Colormap if selected | |
if sidebar_option == "Drawing: Node Colormap": | |
display_node_colormap() | |
# Function to create a multipartite graph | |
def multilayered_graph(*subset_sizes): | |
G = nx.Graph() | |
layers = len(subset_sizes) | |
node_id = 0 | |
# Create nodes for each subset and add edges between nodes in adjacent layers | |
for i, size in enumerate(subset_sizes): | |
for j in range(size): | |
G.add_node(node_id, layer=i) # Assign a layer attribute | |
node_id += 1 | |
# Add edges between nodes in adjacent layers | |
node_ids = list(G.nodes()) | |
for i in range(layers - 1): | |
layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i] | |
next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1] | |
for node in layer_nodes: | |
for next_node in next_layer_nodes: | |
G.add_edge(node, next_node) | |
return G | |
# Function to display Multipartite Layout | |
def display_multipartite_layout(): | |
st.title("Drawing: Multipartite Layout") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3] | |
subset_color = [ | |
"gold", "violet", "violet", "violet", "violet", | |
"limegreen", "limegreen", "darkorange" | |
] | |
# Generate and plot multipartite graph | |
G = multilayered_graph(*subset_sizes) | |
color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)] | |
pos = nx.multipartite_layout(G, subset_key="layer") | |
plt.figure(figsize=(8, 8)) | |
nx.draw(G, pos, node_color=color, with_labels=False) | |
plt.axis("equal") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Let the user input the subset sizes and colors | |
st.write("Enter the subset sizes and colors to create your own multipartite graph.") | |
subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3") | |
subset_sizes = list(map(int, subset_sizes_input.split(','))) | |
subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange") | |
subset_colors = subset_colors_input.split(',') | |
# Check if the number of colors matches the number of subsets | |
if len(subset_sizes) != len(subset_colors): | |
st.error("The number of colors should match the number of subsets.") | |
else: | |
# Add a button to generate the graph | |
if st.button("Generate Graph"): | |
# Generate and plot multipartite graph | |
G = multilayered_graph(*subset_sizes) | |
color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)] | |
pos = nx.multipartite_layout(G, subset_key="layer") | |
plt.figure(figsize=(8, 8)) | |
nx.draw(G, pos, node_color=color, with_labels=False) | |
plt.axis("equal") | |
st.pyplot(plt) | |
# Display Drawing: Multipartite Layout if selected | |
if sidebar_option == "Drawing: Multipartite Layout": | |
display_multipartite_layout() | |
# Function to display Labels and Colors | |
def display_labels_and_colors(): | |
st.title("Drawing: Labels And Colors") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create a cubical graph | |
G = nx.cubical_graph() | |
pos = nx.spring_layout(G, seed=3113794652) # positions for all nodes | |
# Draw nodes with different colors | |
options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9} | |
nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options) | |
nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options) | |
# Draw edges | |
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) | |
nx.draw_networkx_edges( | |
G, | |
pos, | |
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], | |
width=8, | |
alpha=0.5, | |
edge_color="tab:red", | |
) | |
nx.draw_networkx_edges( | |
G, | |
pos, | |
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], | |
width=8, | |
alpha=0.5, | |
edge_color="tab:blue", | |
) | |
# Add labels for nodes | |
labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"} | |
nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke") | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Let the user input the nodes and edges of the graph | |
st.write("Enter the nodes and edges to create your own labeled graph.") | |
nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d") | |
node_labels = nodes.split(',') | |
edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d") | |
edge_list = [tuple(edge.split('-')) for edge in edges.split(',')] | |
# Let user choose colors for nodes and edges | |
node_color = st.color_picker("Pick a color for nodes:", "#FF6347") | |
edge_color = st.color_picker("Pick a color for edges:", "#4682B4") | |
# Add a button to generate the graph | |
if st.button("Generate Graph"): | |
# Generate graph based on user input | |
G_custom = nx.Graph() | |
G_custom.add_nodes_from(node_labels) | |
G_custom.add_edges_from(edge_list) | |
# Generate layout for the nodes | |
pos_custom = nx.spring_layout(G_custom) | |
# Draw the graph | |
nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9) | |
nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7) | |
# Create custom labels | |
custom_labels = {node: f"${node}$" for node in node_labels} | |
nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke") | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
# Display Drawing: Labels And Colors if selected | |
if sidebar_option == "Drawing: Labels And Colors": | |
display_labels_and_colors() | |
# Function to display Drawing: House With Colors | |
def display_house_with_colors(): | |
st.title("Drawing: House With Colors") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create the house graph and explicitly set positions | |
G = nx.house_graph() | |
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)} | |
# Plot nodes with different properties for the "wall" and "roof" nodes | |
nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue") | |
nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange") | |
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6) | |
# Customize axes | |
ax = plt.gca() | |
ax.margins(0.11) | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Allow the user to specify node positions and colors | |
st.write("Specify positions for the house graph nodes.") | |
positions = {} | |
for i in range(5): | |
x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) | |
y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) | |
positions[i] = (x, y) | |
# Allow the user to specify colors for wall and roof nodes | |
wall_color = st.color_picker("Wall color:", "#0000FF") | |
roof_color = st.color_picker("Roof color:", "#FFA500") | |
if st.button("Generate"): | |
# Create the house graph with the specified positions | |
G_custom = nx.house_graph() | |
# Plot nodes with user-defined properties for wall and roof nodes | |
nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color) | |
nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color) | |
nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6) | |
# Customize axes | |
ax = plt.gca() | |
ax.margins(0.11) | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
# Display Drawing: House With Colors if selected | |
if sidebar_option == "Drawing: House With Colors": | |
display_house_with_colors() | |
# Function to display Four Grids visualization for Drawing: Four Grids | |
def display_four_grids(): | |
st.title("Drawing: Four Grids") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Generate a 4x4 grid graph | |
G = nx.grid_2d_graph(4, 4) # 4x4 grid | |
pos = nx.spring_layout(G, iterations=100, seed=39775) | |
# Create a 2x2 subplot | |
fig, all_axes = plt.subplots(2, 2) | |
ax = all_axes.flat | |
# Draw graphs in 4 different styles | |
nx.draw(G, pos, ax=ax[0], font_size=8) | |
nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False) | |
nx.draw( | |
G, | |
pos, | |
ax=ax[2], | |
node_color="tab:green", | |
edgecolors="tab:gray", # Node surface color | |
edge_color="tab:gray", # Color of graph edges | |
node_size=250, | |
with_labels=False, | |
width=6, | |
) | |
H = G.to_directed() | |
nx.draw( | |
H, | |
pos, | |
ax=ax[3], | |
node_color="tab:orange", | |
node_size=20, | |
with_labels=False, | |
arrowsize=10, | |
width=2, | |
) | |
# Set margins for the axes so that nodes aren't clipped | |
for a in ax: | |
a.margins(0.10) | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif option == "Create your own": | |
# Allow the user to customize the grid dimensions | |
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4) | |
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4) | |
if st.button("Generate"): | |
# Generate a custom grid graph | |
G_custom = nx.grid_2d_graph(rows, cols) # Create the grid graph | |
pos = nx.spring_layout(G_custom, iterations=100, seed=39775) | |
# Create a 2x2 subplot | |
fig, all_axes = plt.subplots(2, 2) | |
ax = all_axes.flat | |
# Draw graphs in 4 different styles | |
nx.draw(G_custom, pos, ax=ax[0], font_size=8) | |
nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False) | |
nx.draw( | |
G_custom, | |
pos, | |
ax=ax[2], | |
node_color="tab:green", | |
edgecolors="tab:gray", # Node surface color | |
edge_color="tab:gray", # Color of graph edges | |
node_size=250, | |
with_labels=False, | |
width=6, | |
) | |
H = G_custom.to_directed() | |
nx.draw( | |
H, | |
pos, | |
ax=ax[3], | |
node_color="tab:orange", | |
node_size=20, | |
with_labels=False, | |
arrowsize=10, | |
width=2, | |
) | |
# Set margins for the axes so that nodes aren't clipped | |
for a in ax: | |
a.margins(0.10) | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Display Drawing: Four Grids if selected | |
if sidebar_option == "Drawing: Four Grids": | |
display_four_grids() | |
# Function to display Eigenvalue analysis for Drawing: Eigenvalues | |
def display_eigenvalue_analysis(): | |
st.title("Drawing: Eigenvalues") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Generate random graph with 1000 nodes and 5000 edges | |
n = 1000 | |
m = 5000 | |
G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility | |
# Calculate the normalized Laplacian matrix | |
L = nx.normalized_laplacian_matrix(G) | |
eigenvalues = np.linalg.eigvals(L.toarray()) | |
# Print largest and smallest eigenvalues | |
st.write(f"Largest eigenvalue: {max(eigenvalues)}") | |
st.write(f"Smallest eigenvalue: {min(eigenvalues)}") | |
# Display the histogram of eigenvalues | |
st.write("### Eigenvalue Histogram") | |
plt.hist(eigenvalues, bins=100) | |
plt.xlim(0, 2) # Eigenvalues between 0 and 2 | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Allow the user to customize the number of nodes and edges | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) | |
m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500) | |
if st.button("Generate"): | |
# Generate a random graph with the custom number of nodes and edges | |
G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040) # Seed for reproducibility | |
# Calculate the normalized Laplacian matrix | |
L = nx.normalized_laplacian_matrix(G_custom) | |
eigenvalues = np.linalg.eigvals(L.toarray()) | |
# Print largest and smallest eigenvalues | |
st.write(f"Largest eigenvalue: {max(eigenvalues)}") | |
st.write(f"Smallest eigenvalue: {min(eigenvalues)}") | |
# Display the histogram of eigenvalues | |
st.write("### Eigenvalue Histogram") | |
plt.hist(eigenvalues, bins=100) | |
plt.xlim(0, 2) # Eigenvalues between 0 and 2 | |
st.pyplot(plt) | |
# Display Drawing: Eigenvalues if selected | |
if sidebar_option == "Drawing: Eigenvalues": | |
display_eigenvalue_analysis() | |
# Function to display properties and graph for Basic: Properties | |
def display_graph_properties(G): | |
pathlengths = [] | |
st.write("### Source vertex {target:length, }") | |
for v in G.nodes(): | |
spl = dict(nx.single_source_shortest_path_length(G, v)) | |
st.write(f"Vertex {v}: {spl}") | |
for p in spl: | |
pathlengths.append(spl[p]) | |
avg_path_length = sum(pathlengths) / len(pathlengths) | |
st.write(f"### Average shortest path length: {avg_path_length}") | |
dist = {} | |
for p in pathlengths: | |
dist[p] = dist.get(p, 0) + 1 | |
st.write("### Length #paths") | |
for d in sorted(dist.keys()): | |
st.write(f"Length {d}: {dist[d]} paths") | |
st.write("### Properties") | |
st.write(f"Radius: {nx.radius(G)}") | |
st.write(f"Diameter: {nx.diameter(G)}") | |
st.write(f"Eccentricity: {nx.eccentricity(G)}") | |
st.write(f"Center: {nx.center(G)}") | |
st.write(f"Periphery: {nx.periphery(G)}") | |
st.write(f"Density: {nx.density(G)}") | |
# Visualize the graph | |
st.write("### Graph Visualization") | |
pos = nx.spring_layout(G, seed=3068) # Seed layout for reproducibility | |
draw_graph(G, pos) | |
# Function to display graph for Basic: Read and write graphs | |
def display_read_write_graph(G): | |
st.write("### Adjacency List:") | |
for line in nx.generate_adjlist(G): | |
st.write(line) | |
# Write the graph's edge list to a file | |
st.write("### Writing Edge List to 'grid.edgelist' file:") | |
nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # Save edge list | |
st.write("Edge list written to 'grid.edgelist'") | |
# Read the graph from the edge list | |
st.write("### Reading Edge List from 'grid.edgelist' file:") | |
H = nx.read_edgelist(path="grid.edgelist", delimiter=":") | |
st.write("Edge list read into graph H") | |
# Visualize the graph | |
st.write("### Graph Visualization:") | |
pos = nx.spring_layout(H, seed=200) # Seed for reproducibility | |
draw_graph(H, pos) | |
# Function to display Simple Graphs for Basic: Simple graph | |
def display_simple_graph(G, pos=None): | |
options = { | |
"font_size": 36, | |
"node_size": 3000, | |
"node_color": "white", | |
"edgecolors": "black", | |
"linewidths": 5, | |
"width": 5, | |
} | |
# Draw the network | |
nx.draw_networkx(G, pos, **options) | |
# Set margins for the axes so that nodes aren't clipped | |
ax = plt.gca() | |
ax.margins(0.20) | |
plt.axis("off") | |
st.pyplot(plt) | |
# Function to display Simple Directed Graphs for Basic: Simple graph Directed | |
def display_simple_directed_graph(G, pos=None): | |
options = { | |
"node_size": 500, | |
"node_color": "lightblue", | |
"arrowsize": 20, | |
"width": 2, | |
"edge_color": "gray", | |
} | |
# Draw the directed graph with the given positions and options | |
nx.draw_networkx(G, pos, **options) | |
# Set margins for the axes so that nodes aren't clipped | |
ax = plt.gca() | |
ax.margins(0.20) | |
plt.axis("off") | |
st.pyplot(plt) | |
# Function to display Custom Node Position Graphs for Drawing: Custom Node Position | |
def display_custom_node_position(): | |
st.title("Drawing: Custom Node Position") | |
# Default example graph (path graph with custom node position) | |
G = nx.path_graph(20) | |
center_node = 5 | |
edge_nodes = set(G) - {center_node} | |
# Ensure the nodes around the circle are evenly distributed | |
pos = nx.circular_layout(G.subgraph(edge_nodes)) | |
pos[center_node] = np.array([0, 0]) # Manually specify node position | |
# Draw the graph | |
draw_graph(G, pos) | |
# Function to display Cluster Layout for Drawing: Cluster Layout | |
def display_cluster_layout(): | |
st.title("Drawing: Cluster Layout") | |
G = nx.davis_southern_women_graph() # Example graph | |
communities = nx.community.greedy_modularity_communities(G) | |
# Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor | |
supergraph = nx.cycle_graph(len(communities)) | |
superpos = nx.spring_layout(G, scale=50, seed=429) | |
# Use the "supernode" positions as the center of each node cluster | |
centers = list(superpos.values()) | |
pos = {} | |
for center, comm in zip(centers, communities): | |
pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430)) | |
# Nodes colored by cluster | |
for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")): | |
nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100) | |
nx.draw_networkx_edges(G, pos=pos) | |
plt.tight_layout() | |
st.pyplot(plt) | |
# Function to display Degree Analysis for Drawing: Degree Analysis | |
def display_degree_analysis(): | |
st.title("Drawing: Degree Analysis") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.gnp_random_graph(100, 0.02, seed=10374196) | |
degree_sequence = sorted((d for n, d in G.degree()), reverse=True) | |
dmax = max(degree_sequence) | |
fig = plt.figure("Degree of a random graph", figsize=(8, 8)) | |
# Create a gridspec for adding subplots of different sizes | |
axgrid = fig.add_gridspec(5, 4) | |
ax0 = fig.add_subplot(axgrid[0:3, :]) | |
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0]) | |
pos = nx.spring_layout(Gcc, seed=10396953) | |
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) | |
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) | |
ax0.set_title("Connected components of G") | |
ax0.set_axis_off() | |
ax1 = fig.add_subplot(axgrid[3:, :2]) | |
ax1.plot(degree_sequence, "b-", marker="o") | |
ax1.set_title("Degree Rank Plot") | |
ax1.set_ylabel("Degree") | |
ax1.set_xlabel("Rank") | |
ax2 = fig.add_subplot(axgrid[3:, 2:]) | |
ax2.bar(*np.unique(degree_sequence, return_counts=True)) | |
ax2.set_title("Degree histogram") | |
ax2.set_xlabel("Degree") | |
ax2.set_ylabel("# of Nodes") | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif option == "Create your own": | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100) | |
p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02) | |
if st.button("Generate"): | |
if n_nodes >= 2: | |
G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196) | |
degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True) | |
dmax = max(degree_sequence) | |
fig = plt.figure("Degree of a random graph", figsize=(8, 8)) | |
# Create a gridspec for adding subplots of different sizes | |
axgrid = fig.add_gridspec(5, 4) | |
ax0 = fig.add_subplot(axgrid[0:3, :]) | |
Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0]) | |
pos = nx.spring_layout(Gcc, seed=10396953) | |
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) | |
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) | |
ax0.set_title("Connected components of G") | |
ax0.set_axis_off() | |
ax1 = fig.add_subplot(axgrid[3:, :2]) | |
ax1.plot(degree_sequence, "b-", marker="o") | |
ax1.set_title("Degree Rank Plot") | |
ax1.set_ylabel("Degree") | |
ax1.set_xlabel("Rank") | |
ax2 = fig.add_subplot(axgrid[3:, 2:]) | |
ax2.bar(*np.unique(degree_sequence, return_counts=True)) | |
ax2.set_title("Degree histogram") | |
ax2.set_xlabel("Degree") | |
ax2.set_ylabel("# of Nodes") | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Function to display Ego Graph for Drawing: Ego Graph | |
def display_ego_graph(): | |
st.title("Drawing: Ego Graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create a BA model graph - use seed for reproducibility | |
n = 1000 | |
m = 2 | |
seed = 20532 | |
G = nx.barabasi_albert_graph(n, m, seed=seed) | |
# Find node with largest degree | |
node_and_degree = G.degree() | |
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] | |
# Create ego graph of main hub | |
hub_ego = nx.ego_graph(G, largest_hub) | |
# Draw graph | |
pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility | |
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) | |
# Draw ego as large and red | |
options = {"node_size": 300, "node_color": "r"} | |
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) | |
plt.tight_layout() | |
st.pyplot(plt) | |
elif option == "Create your own": | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) | |
m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2) | |
if st.button("Generate"): | |
if n_nodes >= 2: | |
G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532) | |
# Find node with largest degree | |
node_and_degree = G_custom.degree() | |
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] | |
# Create ego graph of main hub | |
hub_ego = nx.ego_graph(G_custom, largest_hub) | |
# Draw graph | |
pos = nx.spring_layout(hub_ego, seed=20532) # Seed layout for reproducibility | |
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) | |
# Draw ego as large and red | |
options = {"node_size": 300, "node_color": "r"} | |
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) | |
plt.tight_layout() | |
st.pyplot(plt) | |
# Display Drawing: Ego Graph if selected | |
if sidebar_option == "Drawing: Ego Graph": | |
display_ego_graph() | |
# Display Basic: Properties if selected | |
elif sidebar_option == "Basic: Properties": | |
st.title("Basic: Properties") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.lollipop_graph(4, 6) | |
display_graph_properties(G) | |
elif option == "Create your own": | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5) | |
num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3) | |
if st.button("Generate"): | |
if num_nodes >= 2 and num_edges >= 1: | |
G_custom = nx.lollipop_graph(num_nodes, num_edges) | |
display_graph_properties(G_custom) | |
# Display Basic: Read and write graphs if selected | |
elif sidebar_option == "Basic: Read and write graphs": | |
st.title("Basic: Read and write graphs") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.grid_2d_graph(5, 5) | |
display_read_write_graph(G) | |
elif option == "Create your own": | |
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5) | |
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5) | |
if st.button("Generate"): | |
if rows >= 2 and cols >= 2: | |
G_custom = nx.grid_2d_graph(rows, cols) | |
display_read_write_graph(G_custom) | |
# Display Basic: Simple Graph if selected | |
elif sidebar_option == "Basic: Simple graph": | |
st.title("Basic: Simple graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.Graph() | |
G.add_edge(1, 2) | |
G.add_edge(1, 3) | |
G.add_edge(1, 5) | |
G.add_edge(2, 3) | |
G.add_edge(3, 4) | |
G.add_edge(4, 5) | |
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)} | |
display_simple_graph(G, pos) | |
elif option == "Create your own": | |
edges = [] | |
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") | |
if edge_input: | |
edge_list = edge_input.split("\n") | |
for edge in edge_list: | |
u, v = map(int, edge.split(",")) | |
edges.append((u, v)) | |
if st.button("Generate"): | |
G_custom = nx.Graph() | |
G_custom.add_edges_from(edges) | |
pos = nx.spring_layout(G_custom, seed=42) | |
display_simple_graph(G_custom, pos) | |
# Display Basic: Simple Directed Graph if selected | |
elif sidebar_option == "Basic: Simple graph Directed": | |
st.title("Basic: Simple graph Directed") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)]) | |
left_nodes = [0, 1, 2] | |
middle_nodes = [3, 4] | |
right_nodes = [5, 6] | |
pos = {n: (0, i) for i, n in enumerate(left_nodes)} | |
pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)}) | |
pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)}) | |
display_simple_directed_graph(G, pos) | |
elif option == "Create your own": | |
edges = [] | |
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") | |
if edge_input: | |
edge_list = edge_input.split("\n") | |
for edge in edge_list: | |
u, v = map(int, edge.split(",")) | |
edges.append((u, v)) | |
if st.button("Generate"): | |
G_custom = nx.DiGraph() | |
G_custom.add_edges_from(edges) | |
pos = nx.spring_layout(G_custom, seed=42) | |
display_simple_directed_graph(G_custom, pos) | |
# Display Drawing: Custom Node Position if selected | |
elif sidebar_option == "Drawing: Custom Node Position": | |
display_custom_node_position() | |
# Display Drawing: Cluster Layout if selected | |
elif sidebar_option == "Drawing: Cluster Layout": | |
display_cluster_layout() | |
# Display Drawing: Degree Analysis if selected | |
elif sidebar_option == "Drawing: Degree Analysis": | |
display_degree_analysis() | |