Spaces:
Sleeping
Sleeping
import streamlit as st # | |
import itertools as it | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
import numpy as np | |
from operator import itemgetter | |
import math # Import the math module | |
from matplotlib import animation | |
from mpl_toolkits.mplot3d import Axes3D | |
from streamlit.components.v1 import html | |
import matplotlib.colors as mpl | |
from PIL import Image | |
# Sidebar for selecting an option | |
sidebar_option = st.sidebar.radio("Select an option", | |
["Introductory Tutorial", "Basic: Properties", | |
"Basic: Read and write graphs", "Basic: Simple graph", | |
"Basic: Simple graph Directed", "Drawing: Custom Node Position", | |
"Drawing: Cluster Layout", "Drawing: Degree Analysis", | |
"Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids", | |
"Drawing: House With Colors", "Drawing: Labels And Colors", | |
"Drawing: Multipartite Layout", "Drawing: Node Colormap", | |
"Drawing: Rainbow Coloring", "Drawing: Random Geometric Graph","Drawing: Self-loops", | |
"Drawing: Simple Path", "Drawing: Spectral Embedding", "Drawing: Traveling Salesman Problem", | |
"Drawing: Weighted Graph", "3D Drawing: Animations of 3D Rotation", "3D Drawing: Basic Matplotlib", | |
"Graph: DAG - Topological Layout", "Graph: Erdos Renyi", "Graph: Karate Club", "Graph: Minimum Spanning Tree", | |
"Graph: Triads", "Algorithms: Cycle Detection", "Algorithms: Greedy Coloring"]) | |
# Display content when "Select an option" is chosen | |
if sidebar_option == "Introductory Tutorial": | |
st.title("Graph Visualization and Analysis Options") | |
# Display a logo or icon | |
image = Image.open("1.png") # Path to your image file | |
st.image(image, width=200) # You can adjust the width as needed | |
# Add content descriptions | |
descriptions = [ | |
("Basic: Properties", "This option provides insights into the foundational aspects of a graph. You can count nodes (individual points) and edges (connections between nodes). For example, in a graph representing a social network, the nodes could be people, and the edges could represent friendships. The degree distribution tells how many connections each node has, helping identify influential nodes."), | |
("Basic: Read and Write Graphs", "This feature lets you load graphs from files or save your current graph for later use. For instance, if you have a graph stored in a GML file, you can load it and analyze it in your program. Similarly, you can save graphs as adjacency lists or edge lists for portability."), | |
("Basic: Simple Graph", "This generates simple, undirected graphs where edges don’t have a direction. For example, a graph showing roads between cities where travel is possible in both directions. You can create specific structures like a star graph (one central hub) or a cycle graph (nodes connected in a loop)."), | |
("Basic: Simple Graph Directed", "Directed graphs have edges with a direction. They are useful for workflows or dependencies. For example, in a project plan, a directed graph might show tasks with arrows indicating the order in which they need to be completed."), | |
("Drawing: Custom Node Position", "This feature allows you to manually set where each node appears on the graph. For example, in a family tree, you might want to position nodes to reflect generational hierarchies rather than relying on an automatic layout."), | |
("Drawing: Cluster Layout", "Nodes are grouped into clusters based on their connections. For instance, in a network of social media users, this could highlight friend groups. Each group would appear as a tight cluster in the visualization."), | |
("Drawing: Degree Analysis", "This visualizes the connections (or degree) of nodes. For example, in a transportation network, hubs like airports can be highlighted because they have the highest degree, representing more connections to other nodes."), | |
("Drawing: Ego Graph", "Focuses on a single node and its immediate connections. For instance, if you want to see all direct friends of a specific person on a social network, this feature isolates that person and their relationships."), | |
("Drawing: Eigenvalues", "Eigenvalues come from the graph’s Laplacian matrix and reveal structural properties. For example, in community detection, eigenvalues can help identify clusters or measure the connectivity of a graph."), | |
("Drawing: House With Colors", "Displays a basic house graph, a simple structure that resembles a house. For example, you could use it for teaching graph theory basics, with color-coded nodes and edges representing different parts of the structure."), | |
("Drawing: Labels and Colors", "This lets you customize the appearance of nodes and edges by adding labels or colors. For example, in a roadmap, cities (nodes) can be color-coded by region, and roads (edges) can have labels for distance."), | |
("Drawing: Multipartite Layout", "Creates multipartite graphs where nodes are divided into layers, and edges only connect nodes from different layers. For instance, in a university, one layer could represent professors and another students, with edges indicating which professor teaches which student."), | |
("Drawing: Node Colormap", "Applies color gradients to nodes based on their properties, like degree or centrality. For example, nodes in a social network can be shaded to show influence, with darker colors for highly connected individuals."), | |
("Drawing: Rainbow Coloring", "This colorful feature assigns different colors to edges, helping differentiate them. For example, in a circular graph, this can show the relative positions of connections, making it visually appealing."), | |
("Drawing: Random Geometric Graph", "Generates graphs where nodes are connected if they’re within a specific distance. For example, in a wireless sensor network, nodes represent sensors, and edges show connectivity based on signal range."), | |
("Drawing: Self-loops", "Visualizes edges that start and end at the same node. For example, in a citation network, a self-loop could represent a researcher citing their previous work."), | |
("Drawing: Simple Path", "Displays simple linear graphs where nodes connect in a sequence. For example, it could represent a production line where each step depends on the previous one."), | |
("Drawing: Spectral Embedding", "Uses a mathematical technique to arrange nodes in a lower-dimensional space. For example, you can visualize clusters in a high-dimensional dataset in a way that preserves their relationships."), | |
("Drawing: Traveling Salesman Problem", "Visualizes solutions to the Traveling Salesman Problem (TSP), where the goal is to find the shortest route visiting every node once. For example, a delivery route optimization can use this to minimize travel costs."), | |
("Drawing: Weighted Graph", "Shows graphs with weighted edges. For example, in a flight network, edge weights can represent ticket prices or distances, with thicker edges for higher weights."), | |
("3D Drawing: Animations of 3D Rotation", "Generates 3D graphs with rotation animations. For example, you can visualize molecule structures or spatial relationships dynamically."), | |
("3D Drawing: Basic Matplotlib", "Creates 3D graph visualizations using Matplotlib, letting you explore spatial relationships. For example, you could map a city’s buildings in 3D space."), | |
("Graph: DAG - Topological Layout", "Displays Directed Acyclic Graphs (DAGs) in a topological order. For example, it can represent workflows or dependency graphs where tasks need to follow a sequence."), | |
("Graph: Erdos Renyi", "Generates random graphs where edges appear based on a probability. For example, you can model random connections in a network to study statistical properties."), | |
("Graph: Karate Club", "This graph is a classic benchmark in network science, showing relationships in a club. It’s often used for community detection and teaching graph analysis."), | |
("Graph: Minimum Spanning Tree", "Extracts a tree from the graph connecting all nodes with the minimum total edge weight. For example, this is used in network design to minimize cable or pipeline costs."), | |
("Graph: Triads", "Analyzes three-node structures (triads). For example, in social networks, closed triads (triangles) indicate strong relationships among three people."), | |
("Algorithms: Cycle Detection", "Detects cycles in graphs, useful for spotting feedback loops or circular dependencies. For example, in a dependency graph, it can help identify tasks that reference each other."), | |
("Algorithms: Greedy Coloring", "Colors nodes so that no two adjacent nodes share the same color. For example, in exam scheduling, this ensures no two overlapping exams are assigned the same room.") | |
] | |
for title, desc in descriptions: | |
st.subheader(title) # Removed the ### here | |
st.write(desc) | |
st.write("---") | |
def plot_greedy_coloring(graph): | |
# Apply greedy coloring | |
graph_coloring = nx.greedy_color(graph) | |
unique_colors = set(graph_coloring.values()) | |
# Assign colors to nodes based on the greedy coloring | |
graph_color_to_mpl_color = dict(zip(unique_colors, mpl.TABLEAU_COLORS)) | |
node_colors = [graph_color_to_mpl_color[graph_coloring[n]] for n in graph.nodes()] | |
# Layout of the graph | |
pos = nx.spring_layout(graph, seed=14) | |
# Draw the graph | |
nx.draw( | |
graph, | |
pos, | |
with_labels=True, | |
node_size=500, | |
node_color=node_colors, | |
edge_color="grey", | |
font_size=12, | |
font_color="#333333", | |
width=2, | |
) | |
plt.title("Greedy Coloring of Graph") | |
st.pyplot(plt) | |
def algorithms_greedy_coloring(): | |
st.title("Algorithms: Greedy Coloring") | |
# Option to choose between creating your own or using the default example | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="The default example shows a predefined graph, or you can create your own." | |
) | |
if graph_mode == "Default Example": | |
# Create a predefined graph (Dodecahedral graph) for the greedy coloring example | |
G = nx.dodecahedral_graph() | |
st.write("Default Graph: Dodecahedral Graph with Greedy Coloring.") | |
plot_greedy_coloring(G) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Graph") | |
# Input for creating a custom graph | |
nodes_input = st.text_area("Enter nodes (e.g., 1, 2, 3, 4):") | |
edges_input = st.text_area("Enter edges (e.g., (1, 2), (2, 3), (3, 4)):").strip() | |
if st.button("Generate Graph"): | |
if nodes_input and edges_input: | |
try: | |
# Clean and parse the input for nodes (strip spaces, remove empty strings) | |
nodes = [node.strip() for node in nodes_input.split(",") if node.strip()] | |
nodes = list(map(int, nodes)) | |
# Clean and parse the input for edges (strip spaces and remove empty strings) | |
edges = [edge.strip() for edge in edges_input.split("),") if edge.strip()] | |
edges = [tuple(map(int, edge.strip("()").split(","))) for edge in edges] | |
G = nx.Graph() | |
G.add_nodes_from(nodes) | |
G.add_edges_from(edges) | |
st.write("Custom Graph:", G.edges()) | |
plot_greedy_coloring(G) | |
except Exception as e: | |
st.error(f"Error creating the graph: {e}") | |
else: | |
st.error("Please enter valid nodes and edges.") | |
if sidebar_option == "Algorithms: Greedy Coloring": | |
algorithms_greedy_coloring() | |
# Helper function to draw and display graph | |
def draw_graph(G, pos=None, title="Graph Visualization"): | |
plt.figure(figsize=(8, 6)) | |
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold') | |
st.pyplot(plt) | |
def plot_cycle_detection(graph): | |
# Draw the graph | |
pos = nx.spring_layout(graph, seed=8020) | |
nx.draw(graph, pos, with_labels=True, node_size=2000, node_color="lightblue") | |
# Find all cycles in the directed graph | |
try: | |
cycles = list(nx.simple_cycles(graph)) | |
if cycles: | |
st.write("Cycles Detected:") | |
for cycle in cycles: | |
st.write(cycle) | |
# Highlight each cycle in red | |
for cycle in cycles: | |
edges_in_cycle = [(cycle[i], cycle[i + 1] if i + 1 < len(cycle) else cycle[0]) for i in range(len(cycle))] | |
nx.draw_networkx_edges(graph, pos, edgelist=edges_in_cycle, edge_color="r", width=2) | |
else: | |
st.write("No cycles detected") | |
except Exception as e: | |
st.error(f"Error detecting cycles: {e}") | |
# Display the graph | |
plt.title("Cycle Detection in Directed Graph") | |
st.pyplot(plt) | |
def algorithms_cycle_detection(): | |
st.title("Algorithms: Cycle Detection") | |
# Option to choose between creating your own or using the default example | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="The default example shows a predefined graph, or you can create your own." | |
) | |
if graph_mode == "Default Example": | |
# Create a predefined graph with multiple cycles | |
G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2)]) | |
st.write("Default Graph: A simple directed graph with multiple cycles.") | |
plot_cycle_detection(G) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Graph") | |
# Input for creating custom graph | |
edges_input = st.text_area("Enter directed edges (e.g., (1, 2), (2, 3), (3, 1), (3, 4)):").strip() | |
if st.button("Generate Graph"): | |
if edges_input: | |
try: | |
edges = [] | |
# Ensure correct formatting of the input string | |
edge_strings = edges_input.split("),") | |
for edge_str in edge_strings: | |
edge_str = edge_str.strip() | |
if edge_str: | |
# Handle the case where the edge might be missing a closing parenthesis | |
if edge_str[-1] != ")": | |
edge_str += ")" | |
# Remove the opening and closing parentheses | |
edge_tuple = edge_str.strip("()").split(",") | |
if len(edge_tuple) == 2: | |
try: | |
# Safely convert to integers and add the edge | |
edge_tuple = tuple(map(int, edge_tuple)) | |
edges.append(edge_tuple) | |
except ValueError: | |
st.error(f"Invalid edge format: {edge_str}") | |
return | |
if edges: | |
# Create the graph | |
G = nx.DiGraph(edges) | |
st.write("Custom Graph:", G.edges()) | |
plot_cycle_detection(G) | |
else: | |
st.error("No valid edges provided.") | |
except Exception as e: | |
st.error(f"Error creating the graph: {e}") | |
else: | |
st.error("Please enter valid directed edges.") | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Algorithms: Cycle Detection": | |
algorithms_cycle_detection() | |
def triads_graph(): | |
st.title("Graph: Triads") | |
# Sidebar selection for Default Example or Custom Triads | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows predefined triads, or you can create your own triads." | |
) | |
if graph_mode == "Default Example": | |
# Define the triads | |
triads = { | |
"003": [], | |
"012": [(1, 2)], | |
"102": [(1, 2), (2, 1)], | |
"021D": [(3, 1), (3, 2)], | |
"021U": [(1, 3), (2, 3)], | |
"021C": [(1, 3), (3, 2)], | |
"111D": [(1, 2), (2, 1), (3, 1)], | |
"111U": [(1, 2), (2, 1), (1, 3)], | |
"030T": [(1, 2), (3, 2), (1, 3)], | |
"030C": [(1, 3), (3, 2), (2, 1)], | |
"201": [(1, 2), (2, 1), (3, 1), (1, 3)], | |
"120D": [(1, 2), (2, 1), (3, 1), (3, 2)], | |
"120U": [(1, 2), (2, 1), (1, 3), (2, 3)], | |
"120C": [(1, 2), (2, 1), (1, 3), (3, 2)], | |
"210": [(1, 2), (2, 1), (1, 3), (3, 2), (2, 3)], | |
"300": [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)], | |
} | |
fig, axes = plt.subplots(4, 4, figsize=(10, 10)) | |
for (title, triad), ax in zip(triads.items(), axes.flatten()): | |
G = nx.DiGraph() | |
G.add_nodes_from([1, 2, 3]) | |
G.add_edges_from(triad) | |
nx.draw_networkx( | |
G, | |
ax=ax, | |
with_labels=True, # Labels the vertices | |
node_color=["green"], | |
node_size=200, | |
arrowsize=20, | |
width=2, | |
pos=nx.planar_layout(G), | |
) | |
ax.set_xlim(val * 1.2 for val in ax.get_xlim()) | |
ax.set_ylim(val * 1.2 for val in ax.get_ylim()) | |
ax.text( | |
0, | |
0, | |
title, | |
fontsize=15, | |
fontweight="extra bold", | |
horizontalalignment="center", | |
bbox={"boxstyle": "square,pad=0.3", "fc": "none"}, | |
) | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Triads") | |
# Input: Enter triads as a dictionary (e.g., {'triad_name': [(1, 2), (2, 1)]}) | |
triad_input = st.text_area( | |
"Enter your triads in the format: {'triad_name': [(edge1), (edge2), ...]}", | |
value="{'003': [], '012': [(1, 2)]}" | |
) | |
# Generate Button | |
if st.button("Generate Graph"): | |
# Try to evaluate the input as a dictionary of triads | |
try: | |
custom_triads = eval(triad_input) | |
if isinstance(custom_triads, dict) and all(isinstance(value, list) and all(isinstance(edge, tuple) and len(edge) == 2 for edge in value) for value in custom_triads.values()): | |
fig, axes = plt.subplots(len(custom_triads), 1, figsize=(10, len(custom_triads) * 5)) | |
if len(custom_triads) == 1: # Handle case where only one triad is entered | |
axes = [axes] | |
for (title, triad), ax in zip(custom_triads.items(), axes): | |
G = nx.DiGraph() | |
G.add_nodes_from([1, 2, 3]) | |
G.add_edges_from(triad) | |
nx.draw_networkx( | |
G, | |
ax=ax, | |
with_labels=True, # Labels the vertices | |
node_color=["green"], | |
node_size=200, | |
arrowsize=20, | |
width=2, | |
pos=nx.planar_layout(G), | |
) | |
ax.set_xlim(val * 1.2 for val in ax.get_xlim()) | |
ax.set_ylim(val * 1.2 for val in ax.get_ylim()) | |
ax.text( | |
0, | |
0, | |
title, | |
fontsize=15, | |
fontweight="extra bold", | |
horizontalalignment="center", | |
bbox={"boxstyle": "square,pad=0.3", "fc": "none"}, | |
) | |
fig.tight_layout() | |
st.pyplot(fig) | |
else: | |
st.error("Invalid format. Please enter a dictionary of triads in the format {'triad_name': [(edge1), (edge2), ...]}.") | |
except Exception as e: | |
st.error(f"Error parsing input: {e}") | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Graph: Triads": | |
triads_graph() | |
def minimum_spanning_tree_graph(): | |
st.title("Graph: Minimum Spanning Tree") | |
# Sidebar selection for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows a graph and its minimum spanning tree, or you can create your own graph." | |
) | |
if graph_mode == "Default Example": | |
# Create a default graph | |
G = nx.Graph() | |
G.add_edges_from( | |
[ | |
(0, 1, {"weight": 4}), | |
(0, 7, {"weight": 8}), | |
(1, 7, {"weight": 11}), | |
(1, 2, {"weight": 8}), | |
(2, 8, {"weight": 2}), | |
(2, 5, {"weight": 4}), | |
(2, 3, {"weight": 7}), | |
(3, 4, {"weight": 9}), | |
(3, 5, {"weight": 14}), | |
(4, 5, {"weight": 10}), | |
(5, 6, {"weight": 2}), | |
(6, 8, {"weight": 6}), | |
(7, 8, {"weight": 7}), | |
] | |
) | |
# Find the minimum spanning tree | |
T = nx.minimum_spanning_tree(G) | |
# Visualize the graph and the minimum spanning tree | |
pos = nx.spring_layout(G) | |
fig, ax = plt.subplots(figsize=(8, 8)) | |
nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax) | |
nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax) | |
nx.draw_networkx_edge_labels( | |
G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax | |
) | |
nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax) | |
ax.set_title("Graph and Minimum Spanning Tree") | |
plt.axis("off") | |
st.pyplot(fig) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Graph") | |
# Allow user to input the number of nodes and edges for custom graph | |
num_nodes = st.number_input("Number of nodes", min_value=2, value=5) | |
num_edges = st.number_input("Number of edges", min_value=1, value=6) | |
# Create empty graph | |
G = nx.Graph() | |
# Allow user to input the edges and their weights manually | |
edges = [] | |
for i in range(num_edges): | |
source = st.number_input(f"Source node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"source_{i}") | |
dest = st.number_input(f"Destination node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"dest_{i}") | |
weight = st.number_input(f"Weight for edge ({source}, {dest})", min_value=1, value=1, key=f"weight_{i}") | |
edges.append((source, dest, {"weight": weight})) | |
# Add edges to the graph | |
G.add_edges_from(edges) | |
# Add nodes to the graph (to ensure all nodes are included, even if not explicitly added by the user) | |
G.add_nodes_from(range(num_nodes)) | |
# Button to generate the graph and calculate MST | |
if st.button("Generate Graph"): | |
# Find the minimum spanning tree | |
T = nx.minimum_spanning_tree(G) | |
# Visualize the graph and the minimum spanning tree | |
pos = nx.spring_layout(G) | |
fig, ax = plt.subplots(figsize=(8, 8)) | |
nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax) | |
nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax) | |
nx.draw_networkx_edge_labels( | |
G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax | |
) | |
nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax) | |
ax.set_title("Custom Graph and Minimum Spanning Tree") | |
plt.axis("off") | |
st.pyplot(fig) | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Graph: Minimum Spanning Tree": | |
minimum_spanning_tree_graph() | |
def karate_club_graph(): | |
st.title("Graph: Karate Club") | |
# Sidebar selection for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows the Karate Club graph, or you can create your own graph." | |
) | |
if graph_mode == "Default Example": | |
# Load the Karate Club graph | |
G = nx.karate_club_graph() | |
# Display node degree | |
st.write("### Node Degree") | |
for v in G: | |
st.write(f"Node {v:4}: Degree = {G.degree(v)}") | |
# Visualize the graph using circular layout | |
st.write("### Graph Visualization") | |
fig, ax = plt.subplots() | |
nx.draw_circular(G, with_labels=True, ax=ax, node_color="skyblue", edge_color="gray") | |
ax.set_title("Karate Club Graph") | |
st.pyplot(fig) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Graph") | |
# Allow user to input the number of nodes and edges for custom graph | |
num_nodes = st.number_input("Number of nodes", min_value=2, value=10) | |
num_edges = st.number_input("Number of edges", min_value=1, value=15) | |
seed = st.number_input("Seed for Random Graph (optional)", value=20160) | |
# Generate graph button | |
if st.button("Generate Graph"): | |
# Create random graph with user input | |
G = nx.gnm_random_graph(num_nodes, num_edges, seed=seed) | |
# Display node degree | |
st.write("### Node Degree") | |
for v in G: | |
st.write(f"Node {v:4}: Degree = {G.degree(v)}") | |
# Visualize the graph using circular layout | |
st.write("### Graph Visualization") | |
fig, ax = plt.subplots() | |
nx.draw_circular(G, with_labels=True, ax=ax, node_color="lightgreen", edge_color="gray") | |
ax.set_title("Custom Graph") | |
st.pyplot(fig) | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Graph: Karate Club": | |
karate_club_graph() | |
def erdos_renyi_graph(): | |
st.title("Graph: Erdos Renyi") | |
# Sidebar selection for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows a random graph, or you can create your own Erdos-Renyi graph." | |
) | |
if graph_mode == "Default Example": | |
# Default random graph parameters | |
n = 10 # 10 nodes | |
m = 20 # 20 edges | |
seed = 20160 # seed random number generators for reproducibility | |
# Create a button for generating the graph | |
if st.button("Generate Graph"): | |
# Create random graph | |
G = nx.gnm_random_graph(n, m, seed=seed) | |
# Display node properties | |
st.write("### Node Degree and Clustering Coefficient") | |
for v in nx.nodes(G): | |
st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}") | |
# Display adjacency list | |
st.write("### Adjacency List") | |
adj_list = "\n".join([line for line in nx.generate_adjlist(G)]) | |
st.text(adj_list) | |
# Visualize the graph | |
pos = nx.spring_layout(G, seed=seed) # Seed for reproducible layout | |
fig, ax = plt.subplots() | |
nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray") | |
ax.set_title("Erdos-Renyi Random Graph") | |
st.pyplot(fig) | |
elif graph_mode == "Create Your Own": | |
st.write("### Create Your Own Random Erdos-Renyi Graph") | |
# Allow user to input the number of nodes and edges | |
n = st.number_input("Number of nodes (n)", min_value=2, value=10) | |
m = st.number_input("Number of edges (m)", min_value=1, value=20) | |
seed = st.number_input("Seed", value=20160) | |
# Create a button for generating the graph | |
if st.button("Generate Graph"): | |
# Create random graph | |
G = nx.gnm_random_graph(n, m, seed=seed) | |
# Display node properties | |
st.write("### Node Degree and Clustering Coefficient") | |
for v in nx.nodes(G): | |
st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}") | |
# Display adjacency list | |
st.write("### Adjacency List") | |
adj_list = "\n".join([line for line in nx.generate_adjlist(G)]) | |
st.text(adj_list) | |
# Visualize the graph | |
pos = nx.spring_layout(G, seed=seed) # Seed for reproducible layout | |
fig, ax = plt.subplots() | |
nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray") | |
ax.set_title("Erdos-Renyi Random Graph") | |
st.pyplot(fig) | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Graph: Erdos Renyi": | |
erdos_renyi_graph() | |
def dag_topological_layout(): | |
st.title("Graph: DAG - Topological Layout") | |
# Sidebar selection for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows DAG layout in topological order, or you can create your own DAG." | |
) | |
if graph_mode == "Default Example": | |
# Default DAG example | |
G = nx.DiGraph( | |
[ | |
("f", "a"), | |
("a", "b"), | |
("a", "e"), | |
("b", "c"), | |
("b", "d"), | |
("d", "e"), | |
("f", "c"), | |
("f", "g"), | |
("h", "f"), | |
] | |
) | |
# Add layer attribute for multipartite_layout | |
for layer, nodes in enumerate(nx.topological_generations(G)): | |
for node in nodes: | |
G.nodes[node]["layer"] = layer | |
# Compute the multipartite_layout using the "layer" node attribute | |
pos = nx.multipartite_layout(G, subset_key="layer") | |
# Draw the graph | |
fig, ax = plt.subplots() | |
nx.draw_networkx(G, pos=pos, ax=ax) | |
ax.set_title("DAG layout in topological order") | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif graph_mode == "Create Your Own": | |
st.write("### Custom DAG Creation") | |
# Allow the user to input the number of nodes | |
num_nodes = st.number_input("Enter the number of nodes", min_value=2, value=5) | |
# Create node names based on the number of nodes | |
nodes = [str(i) for i in range(num_nodes)] | |
st.write(f"### Nodes: {nodes}") | |
st.write("#### Add Edges between Nodes") | |
# Allow the user to select pairs of nodes to add edges | |
edges = [] | |
for i in range(num_nodes): | |
for j in range(i + 1, num_nodes): | |
edge = (nodes[i], nodes[j]) | |
if st.checkbox(f"Add edge from {edge[0]} to {edge[1]}", value=False): | |
edges.append(edge) | |
# Create the custom DAG | |
G_custom = nx.DiGraph() | |
G_custom.add_edges_from(edges) | |
# Add layer attribute for multipartite_layout | |
for layer, nodes in enumerate(nx.topological_generations(G_custom)): | |
for node in nodes: | |
G_custom.nodes[node]["layer"] = layer | |
# Compute the multipartite_layout using the "layer" node attribute | |
pos_custom = nx.multipartite_layout(G_custom, subset_key="layer") | |
# Draw the custom DAG | |
fig_custom, ax_custom = plt.subplots() | |
nx.draw_networkx(G_custom, pos=pos_custom, ax=ax_custom) | |
ax_custom.set_title("Custom DAG layout in topological order") | |
fig_custom.tight_layout() | |
st.pyplot(fig_custom) | |
# Display the corresponding page based on sidebar option | |
if sidebar_option == "Graph: DAG - Topological Layout": | |
dag_topological_layout() | |
if sidebar_option == "3D Drawing: Animations of 3D Rotation": | |
st.title("3D Drawing: Animations of 3D Rotation") | |
# Provide options for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows a dodecahedral graph, or you can create your own custom graph." | |
) | |
# Define the function to create animation | |
def generate_animation(G, pos, frames=100): | |
nodes = np.array([pos[v] for v in G]) | |
edges = np.array([(pos[u], pos[v]) for u, v in G.edges()]) | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection="3d") | |
def init(): | |
ax.scatter(*nodes.T, alpha=0.2, s=100, color="blue") | |
for vizedge in edges: | |
ax.plot(*vizedge.T, color="gray") | |
ax.grid(False) | |
ax.set_axis_off() | |
plt.tight_layout() | |
return | |
def _frame_update(index): | |
ax.view_init(index * 0.2, index * 0.5) | |
return | |
ani = animation.FuncAnimation( | |
fig, | |
_frame_update, | |
init_func=init, | |
interval=50, | |
cache_frame_data=False, | |
frames=frames, | |
) | |
return ani | |
# Default Example | |
if graph_mode == "Default Example": | |
G = nx.dodecahedral_graph() | |
pos = nx.spectral_layout(G, dim=3) | |
ani = generate_animation(G, pos) | |
# Create Your Own Example | |
else: | |
st.write("### Customize Your Graph") | |
num_nodes = st.slider("Number of Nodes", min_value=5, max_value=50, value=20) | |
edge_prob = st.slider("Edge Probability", min_value=0.1, max_value=1.0, value=0.3) | |
# Generate custom graph | |
G = nx.erdos_renyi_graph(num_nodes, edge_prob) | |
pos = nx.spectral_layout(G, dim=3) | |
ani = generate_animation(G, pos) | |
# Display animation in Streamlit | |
with st.spinner("Rendering animation..."): | |
ani.save("animation.gif", writer="imagemagick") | |
st.image("animation.gif", caption="3D Graph Rotation", use_container_width=True) | |
# Default example code | |
def default_example(): | |
G = nx.cycle_graph(20) | |
# 3d spring layout | |
pos = nx.spring_layout(G, dim=3, seed=779) | |
# Extract node and edge positions from the layout | |
node_xyz = np.array([pos[v] for v in sorted(G)]) | |
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) | |
# Create the 3D figure | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection="3d") | |
# Plot the nodes - alpha is scaled by "depth" automatically | |
ax.scatter(*node_xyz.T, s=100, ec="w") | |
# Plot the edges | |
for vizedge in edge_xyz: | |
ax.plot(*vizedge.T, color="tab:gray") | |
def _format_axes(ax): | |
"""Visualization options for the 3D axes.""" | |
# Turn gridlines off | |
ax.grid(False) | |
# Suppress tick labels | |
for dim in (ax.xaxis, ax.yaxis, ax.zaxis): | |
dim.set_ticks([]) | |
# Set axes labels | |
ax.set_xlabel("x") | |
ax.set_ylabel("y") | |
ax.set_zlabel("z") | |
_format_axes(ax) | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Create your own graph option | |
def create_own_graph(): | |
# Input fields to customize the graph | |
nodes = st.number_input("Number of nodes", min_value=2, max_value=50, value=20) | |
seed = st.number_input("Seed for layout", value=779) | |
# Add a button to generate the graph | |
generate_button = st.button("Generate Graph") | |
if generate_button: | |
# Generate graph and layout | |
G = nx.cycle_graph(nodes) | |
pos = nx.spring_layout(G, dim=3, seed=seed) | |
# Extract node and edge positions | |
node_xyz = np.array([pos[v] for v in sorted(G)]) | |
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) | |
# Create the 3D figure | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection="3d") | |
# Plot the nodes | |
ax.scatter(*node_xyz.T, s=100, ec="w") | |
# Plot the edges | |
for vizedge in edge_xyz: | |
ax.plot(*vizedge.T, color="tab:gray") | |
def _format_axes(ax): | |
"""Visualization options for the 3D axes.""" | |
ax.grid(False) | |
for dim in (ax.xaxis, ax.yaxis, ax.zaxis): | |
dim.set_ticks([]) | |
ax.set_xlabel("x") | |
ax.set_ylabel("y") | |
ax.set_zlabel("z") | |
_format_axes(ax) | |
fig.tight_layout() | |
st.pyplot(fig) | |
if sidebar_option == "3D Drawing: Basic Matplotlib": | |
st.title("3D Drawing: Basic Matplotlib") | |
# Provide options for Default Example or Custom Graph | |
graph_mode = st.radio( | |
"Choose a Mode:", | |
("Default Example", "Create Your Own"), | |
help="Default example shows a cycle graph, or you can create your own custom graph." | |
) | |
# Display the chosen option | |
if graph_mode == "Default Example": | |
default_example() | |
elif graph_mode == "Create Your Own": | |
create_own_graph() | |
# Function to display Weighted Graph | |
def display_weighted_graph(): | |
st.title("Drawing: Weighted Graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default weighted graph example | |
G = nx.Graph() | |
G.add_edge("a", "b", weight=0.6) | |
G.add_edge("a", "c", weight=0.2) | |
G.add_edge("c", "d", weight=0.1) | |
G.add_edge("c", "e", weight=0.7) | |
G.add_edge("c", "f", weight=0.9) | |
G.add_edge("a", "d", weight=0.3) | |
elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] > 0.5] | |
esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] <= 0.5] | |
pos = nx.spring_layout(G, seed=7) # positions for all nodes - seed for reproducibility | |
# nodes | |
nx.draw_networkx_nodes(G, pos, node_size=700) | |
# edges | |
nx.draw_networkx_edges(G, pos, edgelist=elarge, width=6) | |
nx.draw_networkx_edges( | |
G, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed" | |
) | |
# node labels | |
nx.draw_networkx_labels(G, pos, font_size=20, font_family="sans-serif") | |
# edge weight labels | |
edge_labels = nx.get_edge_attributes(G, "weight") | |
nx.draw_networkx_edge_labels(G, pos, edge_labels) | |
ax = plt.gca() | |
ax.margins(0.08) | |
plt.axis("off") | |
plt.tight_layout() | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# User can create their own graph with edges and weights | |
edge_input = st.text_area( | |
"Enter edges with weights (format: node1,node2,weight;node1,node2,weight;...)", | |
"a,b,0.6;a,c,0.2;c,d,0.1;c,e,0.7;c,f,0.9;a,d,0.3" | |
) | |
# Parse the input string | |
edges = edge_input.split(";") | |
edge_list = [] | |
for edge in edges: | |
node1, node2, weight = edge.split(",") | |
edge_list.append((node1.strip(), node2.strip(), float(weight.strip()))) | |
# Add a button to generate the graph | |
generate_button = st.button("Generate Graph") | |
if generate_button: | |
G_custom = nx.Graph() | |
# Add edges to the graph | |
for node1, node2, weight in edge_list: | |
G_custom.add_edge(node1, node2, weight=weight) | |
# Create layout for visualization | |
pos = nx.spring_layout(G_custom, seed=7) | |
# Determine edges based on weight | |
elarge = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] > 0.5] | |
esmall = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] <= 0.5] | |
# Draw the graph | |
nx.draw_networkx_nodes(G_custom, pos, node_size=700) | |
nx.draw_networkx_edges(G_custom, pos, edgelist=elarge, width=6) | |
nx.draw_networkx_edges( | |
G_custom, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed" | |
) | |
nx.draw_networkx_labels(G_custom, pos, font_size=20, font_family="sans-serif") | |
edge_labels = nx.get_edge_attributes(G_custom, "weight") | |
nx.draw_networkx_edge_labels(G_custom, pos, edge_labels) | |
ax = plt.gca() | |
ax.margins(0.08) | |
plt.axis("off") | |
plt.tight_layout() | |
st.pyplot(plt) | |
# Display Drawing: Weighted Graph if selected | |
if sidebar_option == "Drawing: Weighted Graph": | |
display_weighted_graph() | |
from networkx.algorithms.approximation import christofides | |
# Function to display Traveling Salesman Problem | |
def display_tsp(): | |
st.title("Drawing: Traveling Salesman Problem") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default example of random geometric graph with TSP solution | |
G = nx.random_geometric_graph(20, radius=0.4, seed=3) | |
pos = nx.get_node_attributes(G, "pos") | |
# Depot should be at (0.5, 0.5) | |
pos[0] = (0.5, 0.5) | |
H = G.copy() | |
# Calculating the distances between the nodes as edge's weight. | |
for i in range(len(pos)): | |
for j in range(i + 1, len(pos)): | |
dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) | |
dist = dist | |
G.add_edge(i, j, weight=dist) | |
# Find TSP cycle using Christofides' approximation | |
cycle = christofides(G, weight="weight") | |
edge_list = list(nx.utils.pairwise(cycle)) | |
# Draw closest edges on each node only | |
nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) | |
# Draw the route | |
nx.draw_networkx( | |
G, | |
pos, | |
with_labels=True, | |
edgelist=edge_list, | |
edge_color="red", | |
node_size=200, | |
width=3, | |
) | |
st.pyplot(plt) | |
st.write("The route of the traveler is:", cycle) | |
elif option == "Create your own": | |
# User can create their own graph | |
num_nodes = st.slider("Number of nodes:", min_value=3, max_value=30, value=20) | |
radius = st.slider("Edge radius:", min_value=0.1, max_value=1.0, value=0.4) | |
# Add a button to generate a new graph | |
generate_button = st.button("Generate Graph") | |
if generate_button: | |
# Create random geometric graph based on user input | |
G_custom = nx.random_geometric_graph(num_nodes, radius, seed=3) | |
pos = nx.get_node_attributes(G_custom, "pos") | |
# Depot should be at (0.5, 0.5) | |
pos[0] = (0.5, 0.5) | |
H = G_custom.copy() | |
# Calculating the distances between the nodes as edge's weight. | |
for i in range(len(pos)): | |
for j in range(i + 1, len(pos)): | |
dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) | |
dist = dist | |
G_custom.add_edge(i, j, weight=dist) | |
# Find TSP cycle using Christofides' approximation | |
cycle = christofides(G_custom, weight="weight") | |
edge_list = list(nx.utils.pairwise(cycle)) | |
# Draw closest edges on each node only | |
nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) | |
# Draw the TSP route | |
nx.draw_networkx( | |
G_custom, | |
pos, | |
with_labels=True, | |
edgelist=edge_list, | |
edge_color="red", | |
node_size=200, | |
width=3, | |
) | |
st.pyplot(plt) | |
st.write("The route of the traveler is:", cycle) | |
# Display Drawing: Traveling Salesman Problem if selected | |
if sidebar_option == "Drawing: Traveling Salesman Problem": | |
display_tsp() | |
# Function to display Drawing: Spectral Embedding | |
def display_spectral_embedding(): | |
st.title("Drawing: Spectral Embedding") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default example of spectral embedding with a grid graph | |
options = {"node_color": "C0", "node_size": 100} # No labels | |
G = nx.grid_2d_graph(6, 6) | |
fig, axs = plt.subplots(3, 3, figsize=(12, 12)) | |
axs = axs.flatten() | |
for i in range(7): # Looping over 7 images | |
if i == 0: | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 1: | |
G.remove_edge((2, 2), (2, 3)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 2: | |
G.remove_edge((3, 2), (3, 3)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 3: | |
G.remove_edge((2, 2), (3, 2)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 4: | |
G.remove_edge((2, 3), (3, 3)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 5: | |
G.remove_edge((1, 2), (1, 3)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
elif i == 6: | |
G.remove_edge((4, 2), (4, 3)) | |
nx.draw_spectral(G, **options, ax=axs[i]) | |
# Hide the last two subplots (8th and 9th) | |
for j in range(7, 9): | |
fig.delaxes(axs[j]) # Delete the extra axes | |
st.pyplot(fig) | |
elif option == "Create your own": | |
# User can interactively modify the grid and see the results | |
grid_size = st.slider("Choose grid size (n x n):", min_value=3, max_value=10, value=6) | |
G_custom = nx.grid_2d_graph(grid_size, grid_size) | |
# List all edges to allow removal | |
all_edges = list(G_custom.edges()) | |
# Collect user input for edges to remove (before showing the "Generate" button) | |
selected_edges_per_graph = [] | |
for i in range(7): # Loop over 7 graphs | |
selected_edges = st.multiselect(f"Select edges to remove for graph {i+1}:", | |
options=[str(edge) for edge in all_edges]) | |
selected_edges_per_graph.append(selected_edges) | |
# Add "Generate" button after edge selection | |
generate_button = st.button("Generate Graph") | |
if generate_button: | |
fig, axs = plt.subplots(3, 3, figsize=(12, 12)) | |
axs = axs.flatten() | |
# Loop through each subplot and allow edge removal individually | |
for i in range(7): # Loop over 7 graphs | |
edges_to_remove = [tuple(eval(edge)) for edge in selected_edges_per_graph[i]] | |
# Remove the selected edges | |
G_custom_copy = G_custom.copy() | |
G_custom_copy.remove_edges_from(edges_to_remove) | |
# Draw the graph with removed edges | |
nx.draw_spectral(G_custom_copy, **{"node_color": "C0", "node_size": 100}, ax=axs[i]) | |
# Hide the last two subplots (8th and 9th) | |
for j in range(7, 9): | |
fig.delaxes(axs[j]) # Delete the extra axes | |
st.pyplot(fig) | |
# Display Drawing: Spectral Embedding if selected | |
if sidebar_option == "Drawing: Spectral Embedding": | |
display_spectral_embedding() | |
# Function to display Drawing: Simple Path | |
def display_simple_path(): | |
st.title("Drawing: Simple Path") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default example of a simple path graph | |
G = nx.path_graph(8) | |
pos = nx.spring_layout(G, seed=47) # Seed layout for reproducibility | |
# Draw the graph | |
nx.draw(G, pos=pos) | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# User can create their own path graph with a custom number of nodes | |
num_nodes = st.number_input("Number of nodes in the path:", min_value=2, max_value=50, value=8) | |
if st.button("Generate Graph"): | |
# Generate a path graph with user-specified number of nodes | |
G_custom = nx.path_graph(num_nodes) | |
pos = nx.spring_layout(G_custom, seed=47) # Seed layout for reproducibility | |
# Draw the graph | |
nx.draw(G_custom, pos=pos) | |
st.pyplot(plt) | |
# Display Drawing: Simple Path if selected | |
if sidebar_option == "Drawing: Simple Path": | |
display_simple_path() | |
# Function to display Drawing: Self-loops | |
def display_self_loops(): | |
st.title("Drawing: Self-loops") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default example of a graph with self-loops | |
G = nx.complete_graph(3, create_using=nx.DiGraph) | |
G.add_edge(0, 0) # Add a self-loop to node 0 | |
pos = nx.circular_layout(G) | |
# Draw the graph | |
nx.draw(G, pos, with_labels=True) | |
# Add self-loops to the remaining nodes | |
edgelist = [(1, 1), (2, 2)] | |
G.add_edges_from(edgelist) | |
# Draw the newly added self-loops with different formatting | |
nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# User can create their own graph with self-loops | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=3) | |
add_self_loops = st.checkbox("Add self-loops to all nodes?", value=True) | |
if st.button("Generate Graph"): | |
# Generate a complete graph | |
G = nx.complete_graph(num_nodes, create_using=nx.DiGraph) | |
# Optionally add self-loops to all nodes | |
if add_self_loops: | |
for node in G.nodes(): | |
G.add_edge(node, node) | |
pos = nx.circular_layout(G) | |
# Draw the graph with self-loops | |
nx.draw(G, pos, with_labels=True) | |
# Style self-loops differently | |
edgelist = [(node, node) for node in G.nodes()] | |
nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed") | |
st.pyplot(plt) | |
# Display Drawing: Self-loops if selected | |
if sidebar_option == "Drawing: Self-loops": | |
display_self_loops() | |
# Function to display Drawing: Random Geometric Graph | |
def display_random_geometric_graph(): | |
st.title("Drawing: Random Geometric Graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Default random geometric graph example | |
G = nx.random_geometric_graph(200, 0.125, seed=896803) | |
pos = nx.get_node_attributes(G, "pos") | |
# Find node near the center (0.5, 0.5) | |
dmin = 1 | |
ncenter = 0 | |
for n in pos: | |
x, y = pos[n] | |
d = (x - 0.5) ** 2 + (y - 0.5) ** 2 | |
if d < dmin: | |
ncenter = n | |
dmin = d | |
# Color by path length from node near center | |
p = dict(nx.single_source_shortest_path_length(G, ncenter)) | |
plt.figure(figsize=(8, 8)) | |
nx.draw_networkx_edges(G, pos, alpha=0.4) | |
nx.draw_networkx_nodes( | |
G, | |
pos, | |
nodelist=list(p.keys()), | |
node_size=80, | |
node_color=list(p.values()), | |
cmap=plt.cm.Reds_r, | |
) | |
plt.xlim(-0.05, 1.05) | |
plt.ylim(-0.05, 1.05) | |
plt.axis("off") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# User can create their own random geometric graph | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=200) | |
distance = st.slider("Edge distance threshold (between 0 and 1):", 0.01, 1.0, 0.125) | |
if st.button("Generate Graph"): | |
# Generate the graph with user input | |
G = nx.random_geometric_graph(num_nodes, distance, seed=896803) | |
pos = nx.get_node_attributes(G, "pos") | |
# Find node near the center (0.5, 0.5) | |
dmin = 1 | |
ncenter = 0 | |
for n in pos: | |
x, y = pos[n] | |
d = (x - 0.5) ** 2 + (y - 0.5) ** 2 | |
if d < dmin: | |
ncenter = n | |
dmin = d | |
# Color by path length from node near center | |
p = dict(nx.single_source_shortest_path_length(G, ncenter)) | |
plt.figure(figsize=(8, 8)) | |
nx.draw_networkx_edges(G, pos, alpha=0.4) | |
nx.draw_networkx_nodes( | |
G, | |
pos, | |
nodelist=list(p.keys()), | |
node_size=80, | |
node_color=list(p.values()), | |
cmap=plt.cm.Reds_r, | |
) | |
plt.xlim(-0.05, 1.05) | |
plt.ylim(-0.05, 1.05) | |
plt.axis("off") | |
st.pyplot(plt) | |
# Display Drawing: Random Geometric Graph if selected | |
if sidebar_option == "Drawing: Random Geometric Graph": | |
display_random_geometric_graph() | |
# Function to display Drawing: Rainbow Coloring | |
def display_rainbow_coloring(): | |
st.title("Drawing: Rainbow Coloring") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Rainbow Coloring with default parameters | |
node_dist_to_color = { | |
1: "tab:red", | |
2: "tab:orange", | |
3: "tab:olive", | |
4: "tab:green", | |
5: "tab:blue", | |
6: "tab:purple", | |
} | |
nnodes = 13 | |
G = nx.complete_graph(nnodes) | |
n = (nnodes - 1) // 2 | |
ndist_iter = list(range(1, n + 1)) | |
ndist_iter += ndist_iter[::-1] | |
def cycle(nlist, n): | |
return nlist[-n:] + nlist[:-n] | |
nodes = list(G.nodes()) | |
for i, nd in enumerate(ndist_iter): | |
for u, v in zip(nodes, cycle(nodes, i + 1)): | |
G[u][v]["color"] = node_dist_to_color[nd] | |
pos = nx.circular_layout(G) | |
# Create a figure with 1:1 aspect ratio to preserve the circle. | |
fig, ax = plt.subplots(figsize=(8, 8)) | |
node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0} | |
nx.draw_networkx_nodes(G, pos, **node_opts) | |
nx.draw_networkx_labels(G, pos, font_size=14) | |
# Extract color from edge data | |
edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)] | |
nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors) | |
ax.set_axis_off() | |
fig.tight_layout() | |
st.pyplot(plt) | |
elif option == "Create your own": | |
nnodes = st.number_input("Number of nodes (max=14):", min_value=2, max_value=50, value=13) | |
# Allow users to create their own color map | |
red = st.color_picker("Select a color for Red (1)", "#ff0000") | |
orange = st.color_picker("Select a color for Orange (2)", "#ff7f00") | |
olive = st.color_picker("Select a color for Olive (3)", "#808000") | |
green = st.color_picker("Select a color for Green (4)", "#008000") | |
blue = st.color_picker("Select a color for Blue (5)", "#0000ff") | |
purple = st.color_picker("Select a color for Purple (6)", "#800080") | |
node_dist_to_color = { | |
1: red, | |
2: orange, | |
3: olive, | |
4: green, | |
5: blue, | |
6: purple, | |
} | |
if st.button("Generate Graph"): | |
G = nx.complete_graph(nnodes) | |
n = (nnodes - 1) // 2 | |
ndist_iter = list(range(1, n + 1)) | |
ndist_iter += ndist_iter[::-1] | |
def cycle(nlist, n): | |
return nlist[-n:] + nlist[:-n] | |
nodes = list(G.nodes()) | |
for i, nd in enumerate(ndist_iter): | |
for u, v in zip(nodes, cycle(nodes, i + 1)): | |
G[u][v]["color"] = node_dist_to_color[nd] | |
pos = nx.circular_layout(G) | |
# Create a figure with 1:1 aspect ratio to preserve the circle. | |
fig, ax = plt.subplots(figsize=(8, 8)) | |
node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0} | |
nx.draw_networkx_nodes(G, pos, **node_opts) | |
nx.draw_networkx_labels(G, pos, font_size=14) | |
# Extract color from edge data | |
edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)] | |
nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors) | |
ax.set_axis_off() | |
fig.tight_layout() | |
st.pyplot(plt) | |
# Display Drawing: Rainbow Coloring if selected | |
if sidebar_option == "Drawing: Rainbow Coloring": | |
display_rainbow_coloring() | |
# Function to display Drawing: Node Colormap | |
def display_node_colormap(): | |
st.title("Drawing: Node Colormap") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.cycle_graph(24) | |
pos = nx.circular_layout(G) | |
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues) | |
st.pyplot(plt) | |
elif option == "Create your own": | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24) | |
color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues')) | |
if st.button("Generate Graph"): | |
# Create cycle graph with custom number of nodes | |
G_custom = nx.cycle_graph(num_nodes) | |
pos = nx.circular_layout(G_custom) | |
nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map)) | |
st.pyplot(plt) | |
# Display Drawing: Node Colormap if selected | |
if sidebar_option == "Drawing: Node Colormap": | |
display_node_colormap() | |
# Function to create a multipartite graph | |
def multilayered_graph(*subset_sizes): | |
G = nx.Graph() | |
layers = len(subset_sizes) | |
node_id = 0 | |
# Create nodes for each subset and add edges between nodes in adjacent layers | |
for i, size in enumerate(subset_sizes): | |
for j in range(size): | |
G.add_node(node_id, layer=i) # Assign a layer attribute | |
node_id += 1 | |
# Add edges between nodes in adjacent layers | |
node_ids = list(G.nodes()) | |
for i in range(layers - 1): | |
layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i] | |
next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1] | |
for node in layer_nodes: | |
for next_node in next_layer_nodes: | |
G.add_edge(node, next_node) | |
return G | |
# Function to display Multipartite Layout | |
def display_multipartite_layout(): | |
st.title("Drawing: Multipartite Layout") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3] | |
subset_color = [ | |
"gold", "violet", "violet", "violet", "violet", | |
"limegreen", "limegreen", "darkorange" | |
] | |
# Generate and plot multipartite graph | |
G = multilayered_graph(*subset_sizes) | |
color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)] | |
pos = nx.multipartite_layout(G, subset_key="layer") | |
plt.figure(figsize=(8, 8)) | |
nx.draw(G, pos, node_color=color, with_labels=False) | |
plt.axis("equal") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Let the user input the subset sizes and colors | |
st.write("Enter the subset sizes and colors to create your own multipartite graph.") | |
subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3") | |
subset_sizes = list(map(int, subset_sizes_input.split(','))) | |
subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange") | |
subset_colors = subset_colors_input.split(',') | |
# Check if the number of colors matches the number of subsets | |
if len(subset_sizes) != len(subset_colors): | |
st.error("The number of colors should match the number of subsets.") | |
else: | |
# Add a button to generate the graph | |
if st.button("Generate Graph"): | |
# Generate and plot multipartite graph | |
G = multilayered_graph(*subset_sizes) | |
color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)] | |
pos = nx.multipartite_layout(G, subset_key="layer") | |
plt.figure(figsize=(8, 8)) | |
nx.draw(G, pos, node_color=color, with_labels=False) | |
plt.axis("equal") | |
st.pyplot(plt) | |
# Display Drawing: Multipartite Layout if selected | |
if sidebar_option == "Drawing: Multipartite Layout": | |
display_multipartite_layout() | |
# Function to display Labels and Colors | |
def display_labels_and_colors(): | |
st.title("Drawing: Labels And Colors") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create a cubical graph | |
G = nx.cubical_graph() | |
pos = nx.spring_layout(G, seed=3113794652) # positions for all nodes | |
# Draw nodes with different colors | |
options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9} | |
nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options) | |
nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options) | |
# Draw edges | |
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) | |
nx.draw_networkx_edges( | |
G, | |
pos, | |
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], | |
width=8, | |
alpha=0.5, | |
edge_color="tab:red", | |
) | |
nx.draw_networkx_edges( | |
G, | |
pos, | |
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], | |
width=8, | |
alpha=0.5, | |
edge_color="tab:blue", | |
) | |
# Add labels for nodes | |
labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"} | |
nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke") | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Let the user input the nodes and edges of the graph | |
st.write("Enter the nodes and edges to create your own labeled graph.") | |
nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d") | |
node_labels = nodes.split(',') | |
edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d") | |
edge_list = [tuple(edge.split('-')) for edge in edges.split(',')] | |
# Let user choose colors for nodes and edges | |
node_color = st.color_picker("Pick a color for nodes:", "#FF6347") | |
edge_color = st.color_picker("Pick a color for edges:", "#4682B4") | |
# Add a button to generate the graph | |
if st.button("Generate Graph"): | |
# Generate graph based on user input | |
G_custom = nx.Graph() | |
G_custom.add_nodes_from(node_labels) | |
G_custom.add_edges_from(edge_list) | |
# Generate layout for the nodes | |
pos_custom = nx.spring_layout(G_custom) | |
# Draw the graph | |
nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9) | |
nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7) | |
# Create custom labels | |
custom_labels = {node: f"${node}$" for node in node_labels} | |
nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke") | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
# Display Drawing: Labels And Colors if selected | |
if sidebar_option == "Drawing: Labels And Colors": | |
display_labels_and_colors() | |
# Function to display Drawing: House With Colors | |
def display_house_with_colors(): | |
st.title("Drawing: House With Colors") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create the house graph and explicitly set positions | |
G = nx.house_graph() | |
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)} | |
# Plot nodes with different properties for the "wall" and "roof" nodes | |
nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue") | |
nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange") | |
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6) | |
# Customize axes | |
ax = plt.gca() | |
ax.margins(0.11) | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Allow the user to specify node positions and colors | |
st.write("Specify positions for the house graph nodes.") | |
positions = {} | |
for i in range(5): | |
x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) | |
y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) | |
positions[i] = (x, y) | |
# Allow the user to specify colors for wall and roof nodes | |
wall_color = st.color_picker("Wall color:", "#0000FF") | |
roof_color = st.color_picker("Roof color:", "#FFA500") | |
if st.button("Generate"): | |
# Create the house graph with the specified positions | |
G_custom = nx.house_graph() | |
# Plot nodes with user-defined properties for wall and roof nodes | |
nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color) | |
nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color) | |
nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6) | |
# Customize axes | |
ax = plt.gca() | |
ax.margins(0.11) | |
plt.tight_layout() | |
plt.axis("off") | |
st.pyplot(plt) | |
# Display Drawing: House With Colors if selected | |
if sidebar_option == "Drawing: House With Colors": | |
display_house_with_colors() | |
# Function to display Four Grids visualization for Drawing: Four Grids | |
def display_four_grids(): | |
st.title("Drawing: Four Grids") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Generate a 4x4 grid graph | |
G = nx.grid_2d_graph(4, 4) # 4x4 grid | |
pos = nx.spring_layout(G, iterations=100, seed=39775) | |
# Create a 2x2 subplot | |
fig, all_axes = plt.subplots(2, 2) | |
ax = all_axes.flat | |
# Draw graphs in 4 different styles | |
nx.draw(G, pos, ax=ax[0], font_size=8) | |
nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False) | |
nx.draw( | |
G, | |
pos, | |
ax=ax[2], | |
node_color="tab:green", | |
edgecolors="tab:gray", # Node surface color | |
edge_color="tab:gray", # Color of graph edges | |
node_size=250, | |
with_labels=False, | |
width=6, | |
) | |
H = G.to_directed() | |
nx.draw( | |
H, | |
pos, | |
ax=ax[3], | |
node_color="tab:orange", | |
node_size=20, | |
with_labels=False, | |
arrowsize=10, | |
width=2, | |
) | |
# Set margins for the axes so that nodes aren't clipped | |
for a in ax: | |
a.margins(0.10) | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif option == "Create your own": | |
# Allow the user to customize the grid dimensions | |
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4) | |
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4) | |
if st.button("Generate"): | |
# Generate a custom grid graph | |
G_custom = nx.grid_2d_graph(rows, cols) # Create the grid graph | |
pos = nx.spring_layout(G_custom, iterations=100, seed=39775) | |
# Create a 2x2 subplot | |
fig, all_axes = plt.subplots(2, 2) | |
ax = all_axes.flat | |
# Draw graphs in 4 different styles | |
nx.draw(G_custom, pos, ax=ax[0], font_size=8) | |
nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False) | |
nx.draw( | |
G_custom, | |
pos, | |
ax=ax[2], | |
node_color="tab:green", | |
edgecolors="tab:gray", # Node surface color | |
edge_color="tab:gray", # Color of graph edges | |
node_size=250, | |
with_labels=False, | |
width=6, | |
) | |
H = G_custom.to_directed() | |
nx.draw( | |
H, | |
pos, | |
ax=ax[3], | |
node_color="tab:orange", | |
node_size=20, | |
with_labels=False, | |
arrowsize=10, | |
width=2, | |
) | |
# Set margins for the axes so that nodes aren't clipped | |
for a in ax: | |
a.margins(0.10) | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Display Drawing: Four Grids if selected | |
if sidebar_option == "Drawing: Four Grids": | |
display_four_grids() | |
# Function to display Eigenvalue analysis for Drawing: Eigenvalues | |
def display_eigenvalue_analysis(): | |
st.title("Drawing: Eigenvalues") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Generate random graph with 1000 nodes and 5000 edges | |
n = 1000 | |
m = 5000 | |
G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility | |
# Calculate the normalized Laplacian matrix | |
L = nx.normalized_laplacian_matrix(G) | |
eigenvalues = np.linalg.eigvals(L.toarray()) | |
# Print largest and smallest eigenvalues | |
st.write(f"Largest eigenvalue: {max(eigenvalues)}") | |
st.write(f"Smallest eigenvalue: {min(eigenvalues)}") | |
# Display the histogram of eigenvalues | |
st.write("### Eigenvalue Histogram") | |
plt.hist(eigenvalues, bins=100) | |
plt.xlim(0, 2) # Eigenvalues between 0 and 2 | |
st.pyplot(plt) | |
elif option == "Create your own": | |
# Allow the user to customize the number of nodes and edges | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) | |
m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500) | |
if st.button("Generate"): | |
# Generate a random graph with the custom number of nodes and edges | |
G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040) # Seed for reproducibility | |
# Calculate the normalized Laplacian matrix | |
L = nx.normalized_laplacian_matrix(G_custom) | |
eigenvalues = np.linalg.eigvals(L.toarray()) | |
# Print largest and smallest eigenvalues | |
st.write(f"Largest eigenvalue: {max(eigenvalues)}") | |
st.write(f"Smallest eigenvalue: {min(eigenvalues)}") | |
# Display the histogram of eigenvalues | |
st.write("### Eigenvalue Histogram") | |
plt.hist(eigenvalues, bins=100) | |
plt.xlim(0, 2) # Eigenvalues between 0 and 2 | |
st.pyplot(plt) | |
# Display Drawing: Eigenvalues if selected | |
if sidebar_option == "Drawing: Eigenvalues": | |
display_eigenvalue_analysis() | |
# Function to display properties and graph for Basic: Properties | |
def display_graph_properties(G): | |
pathlengths = [] | |
st.write("### Source vertex {target:length, }") | |
for v in G.nodes(): | |
spl = dict(nx.single_source_shortest_path_length(G, v)) | |
st.write(f"Vertex {v}: {spl}") | |
for p in spl: | |
pathlengths.append(spl[p]) | |
avg_path_length = sum(pathlengths) / len(pathlengths) | |
st.write(f"### Average shortest path length: {avg_path_length}") | |
dist = {} | |
for p in pathlengths: | |
dist[p] = dist.get(p, 0) + 1 | |
st.write("### Length #paths") | |
for d in sorted(dist.keys()): | |
st.write(f"Length {d}: {dist[d]} paths") | |
st.write("### Properties") | |
st.write(f"Radius: {nx.radius(G)}") | |
st.write(f"Diameter: {nx.diameter(G)}") | |
st.write(f"Eccentricity: {nx.eccentricity(G)}") | |
st.write(f"Center: {nx.center(G)}") | |
st.write(f"Periphery: {nx.periphery(G)}") | |
st.write(f"Density: {nx.density(G)}") | |
# Visualize the graph | |
st.write("### Graph Visualization") | |
pos = nx.spring_layout(G, seed=3068) # Seed layout for reproducibility | |
draw_graph(G, pos) | |
# Function to display graph for Basic: Read and write graphs | |
def display_read_write_graph(G): | |
st.write("### Adjacency List:") | |
for line in nx.generate_adjlist(G): | |
st.write(line) | |
# Write the graph's edge list to a file | |
st.write("### Writing Edge List to 'grid.edgelist' file:") | |
nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # Save edge list | |
st.write("Edge list written to 'grid.edgelist'") | |
# Read the graph from the edge list | |
st.write("### Reading Edge List from 'grid.edgelist' file:") | |
H = nx.read_edgelist(path="grid.edgelist", delimiter=":") | |
st.write("Edge list read into graph H") | |
# Visualize the graph | |
st.write("### Graph Visualization:") | |
pos = nx.spring_layout(H, seed=200) # Seed for reproducibility | |
draw_graph(H, pos) | |
# Function to display Simple Graphs for Basic: Simple graph | |
def display_simple_graph(G, pos=None): | |
options = { | |
"font_size": 36, | |
"node_size": 3000, | |
"node_color": "white", | |
"edgecolors": "black", | |
"linewidths": 5, | |
"width": 5, | |
} | |
# Draw the network | |
nx.draw_networkx(G, pos, **options) | |
# Set margins for the axes so that nodes aren't clipped | |
ax = plt.gca() | |
ax.margins(0.20) | |
plt.axis("off") | |
st.pyplot(plt) | |
# Function to display Simple Directed Graphs for Basic: Simple graph Directed | |
def display_simple_directed_graph(G, pos=None): | |
options = { | |
"node_size": 500, | |
"node_color": "lightblue", | |
"arrowsize": 20, | |
"width": 2, | |
"edge_color": "gray", | |
} | |
# Draw the directed graph with the given positions and options | |
nx.draw_networkx(G, pos, **options) | |
# Set margins for the axes so that nodes aren't clipped | |
ax = plt.gca() | |
ax.margins(0.20) | |
plt.axis("off") | |
st.pyplot(plt) | |
# Function to display Custom Node Position Graphs for Drawing: Custom Node Position | |
def display_custom_node_position(): | |
st.title("Drawing: Custom Node Position") | |
# Default example graph (path graph with custom node position) | |
G = nx.path_graph(20) | |
center_node = 5 | |
edge_nodes = set(G) - {center_node} | |
# Ensure the nodes around the circle are evenly distributed | |
pos = nx.circular_layout(G.subgraph(edge_nodes)) | |
pos[center_node] = np.array([0, 0]) # Manually specify node position | |
# Draw the graph | |
draw_graph(G, pos) | |
# Function to display Cluster Layout for Drawing: Cluster Layout | |
def display_cluster_layout(): | |
st.title("Drawing: Cluster Layout") | |
G = nx.davis_southern_women_graph() # Example graph | |
communities = nx.community.greedy_modularity_communities(G) | |
# Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor | |
supergraph = nx.cycle_graph(len(communities)) | |
superpos = nx.spring_layout(G, scale=50, seed=429) | |
# Use the "supernode" positions as the center of each node cluster | |
centers = list(superpos.values()) | |
pos = {} | |
for center, comm in zip(centers, communities): | |
pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430)) | |
# Nodes colored by cluster | |
for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")): | |
nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100) | |
nx.draw_networkx_edges(G, pos=pos) | |
plt.tight_layout() | |
st.pyplot(plt) | |
# Function to display Degree Analysis for Drawing: Degree Analysis | |
def display_degree_analysis(): | |
st.title("Drawing: Degree Analysis") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.gnp_random_graph(100, 0.02, seed=10374196) | |
degree_sequence = sorted((d for n, d in G.degree()), reverse=True) | |
dmax = max(degree_sequence) | |
fig = plt.figure("Degree of a random graph", figsize=(8, 8)) | |
# Create a gridspec for adding subplots of different sizes | |
axgrid = fig.add_gridspec(5, 4) | |
ax0 = fig.add_subplot(axgrid[0:3, :]) | |
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0]) | |
pos = nx.spring_layout(Gcc, seed=10396953) | |
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) | |
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) | |
ax0.set_title("Connected components of G") | |
ax0.set_axis_off() | |
ax1 = fig.add_subplot(axgrid[3:, :2]) | |
ax1.plot(degree_sequence, "b-", marker="o") | |
ax1.set_title("Degree Rank Plot") | |
ax1.set_ylabel("Degree") | |
ax1.set_xlabel("Rank") | |
ax2 = fig.add_subplot(axgrid[3:, 2:]) | |
ax2.bar(*np.unique(degree_sequence, return_counts=True)) | |
ax2.set_title("Degree histogram") | |
ax2.set_xlabel("Degree") | |
ax2.set_ylabel("# of Nodes") | |
fig.tight_layout() | |
st.pyplot(fig) | |
elif option == "Create your own": | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100) | |
p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02) | |
if st.button("Generate"): | |
if n_nodes >= 2: | |
G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196) | |
degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True) | |
dmax = max(degree_sequence) | |
fig = plt.figure("Degree of a random graph", figsize=(8, 8)) | |
# Create a gridspec for adding subplots of different sizes | |
axgrid = fig.add_gridspec(5, 4) | |
ax0 = fig.add_subplot(axgrid[0:3, :]) | |
Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0]) | |
pos = nx.spring_layout(Gcc, seed=10396953) | |
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) | |
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) | |
ax0.set_title("Connected components of G") | |
ax0.set_axis_off() | |
ax1 = fig.add_subplot(axgrid[3:, :2]) | |
ax1.plot(degree_sequence, "b-", marker="o") | |
ax1.set_title("Degree Rank Plot") | |
ax1.set_ylabel("Degree") | |
ax1.set_xlabel("Rank") | |
ax2 = fig.add_subplot(axgrid[3:, 2:]) | |
ax2.bar(*np.unique(degree_sequence, return_counts=True)) | |
ax2.set_title("Degree histogram") | |
ax2.set_xlabel("Degree") | |
ax2.set_ylabel("# of Nodes") | |
fig.tight_layout() | |
st.pyplot(fig) | |
# Function to display Ego Graph for Drawing: Ego Graph | |
def display_ego_graph(): | |
st.title("Drawing: Ego Graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
# Create a BA model graph - use seed for reproducibility | |
n = 1000 | |
m = 2 | |
seed = 20532 | |
G = nx.barabasi_albert_graph(n, m, seed=seed) | |
# Find node with largest degree | |
node_and_degree = G.degree() | |
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] | |
# Create ego graph of main hub | |
hub_ego = nx.ego_graph(G, largest_hub) | |
# Draw graph | |
pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility | |
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) | |
# Draw ego as large and red | |
options = {"node_size": 300, "node_color": "r"} | |
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) | |
plt.tight_layout() | |
st.pyplot(plt) | |
elif option == "Create your own": | |
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) | |
m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2) | |
if st.button("Generate"): | |
if n_nodes >= 2: | |
G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532) | |
# Find node with largest degree | |
node_and_degree = G_custom.degree() | |
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] | |
# Create ego graph of main hub | |
hub_ego = nx.ego_graph(G_custom, largest_hub) | |
# Draw graph | |
pos = nx.spring_layout(hub_ego, seed=20532) # Seed layout for reproducibility | |
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) | |
# Draw ego as large and red | |
options = {"node_size": 300, "node_color": "r"} | |
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) | |
plt.tight_layout() | |
st.pyplot(plt) | |
# Display Drawing: Ego Graph if selected | |
if sidebar_option == "Drawing: Ego Graph": | |
display_ego_graph() | |
# Display Basic: Properties if selected | |
elif sidebar_option == "Basic: Properties": | |
st.title("Basic: Properties") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.lollipop_graph(4, 6) | |
display_graph_properties(G) | |
elif option == "Create your own": | |
num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5) | |
num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3) | |
if st.button("Generate"): | |
if num_nodes >= 2 and num_edges >= 1: | |
G_custom = nx.lollipop_graph(num_nodes, num_edges) | |
display_graph_properties(G_custom) | |
# Display Basic: Read and write graphs if selected | |
elif sidebar_option == "Basic: Read and write graphs": | |
st.title("Basic: Read and write graphs") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.grid_2d_graph(5, 5) | |
display_read_write_graph(G) | |
elif option == "Create your own": | |
rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5) | |
cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5) | |
if st.button("Generate"): | |
if rows >= 2 and cols >= 2: | |
G_custom = nx.grid_2d_graph(rows, cols) | |
display_read_write_graph(G_custom) | |
# Display Basic: Simple Graph if selected | |
elif sidebar_option == "Basic: Simple graph": | |
st.title("Basic: Simple graph") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.Graph() | |
G.add_edge(1, 2) | |
G.add_edge(1, 3) | |
G.add_edge(1, 5) | |
G.add_edge(2, 3) | |
G.add_edge(3, 4) | |
G.add_edge(4, 5) | |
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)} | |
display_simple_graph(G, pos) | |
elif option == "Create your own": | |
edges = [] | |
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") | |
if edge_input: | |
edge_list = edge_input.split("\n") | |
for edge in edge_list: | |
u, v = map(int, edge.split(",")) | |
edges.append((u, v)) | |
if st.button("Generate"): | |
G_custom = nx.Graph() | |
G_custom.add_edges_from(edges) | |
pos = nx.spring_layout(G_custom, seed=42) | |
display_simple_graph(G_custom, pos) | |
# Display Basic: Simple Directed Graph if selected | |
elif sidebar_option == "Basic: Simple graph Directed": | |
st.title("Basic: Simple graph Directed") | |
option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) | |
if option == "Default Example": | |
G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)]) | |
left_nodes = [0, 1, 2] | |
middle_nodes = [3, 4] | |
right_nodes = [5, 6] | |
pos = {n: (0, i) for i, n in enumerate(left_nodes)} | |
pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)}) | |
pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)}) | |
display_simple_directed_graph(G, pos) | |
elif option == "Create your own": | |
edges = [] | |
edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") | |
if edge_input: | |
edge_list = edge_input.split("\n") | |
for edge in edge_list: | |
u, v = map(int, edge.split(",")) | |
edges.append((u, v)) | |
if st.button("Generate"): | |
G_custom = nx.DiGraph() | |
G_custom.add_edges_from(edges) | |
pos = nx.spring_layout(G_custom, seed=42) | |
display_simple_directed_graph(G_custom, pos) | |
# Display Drawing: Custom Node Position if selected | |
elif sidebar_option == "Drawing: Custom Node Position": | |
display_custom_node_position() | |
# Display Drawing: Cluster Layout if selected | |
elif sidebar_option == "Drawing: Cluster Layout": | |
display_cluster_layout() | |
# Display Drawing: Degree Analysis if selected | |
elif sidebar_option == "Drawing: Degree Analysis": | |
display_degree_analysis() | |