Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,59 @@ def draw_graph(G, pos=None, title="Graph Visualization"):
|
|
18 |
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
|
19 |
st.pyplot(plt)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Function to display properties and graph for Basic: Properties
|
22 |
def display_graph_properties(G):
|
23 |
pathlengths = []
|
|
|
18 |
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold')
|
19 |
st.pyplot(plt)
|
20 |
|
21 |
+
# Function to display Eigenvalue analysis for Drawing: Eigenvalues
|
22 |
+
def display_eigenvalue_analysis():
|
23 |
+
st.title("Drawing: Eigenvalues")
|
24 |
+
|
25 |
+
option = st.radio("Choose a graph type:", ("Default Example", "Create your own"))
|
26 |
+
|
27 |
+
if option == "Default Example":
|
28 |
+
# Generate random graph with 1000 nodes and 5000 edges
|
29 |
+
n = 1000
|
30 |
+
m = 5000
|
31 |
+
G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility
|
32 |
+
|
33 |
+
# Calculate the normalized Laplacian matrix
|
34 |
+
L = nx.normalized_laplacian_matrix(G)
|
35 |
+
eigenvalues = numpy.linalg.eigvals(L.toarray())
|
36 |
+
|
37 |
+
# Print largest and smallest eigenvalues
|
38 |
+
st.write(f"Largest eigenvalue: {max(eigenvalues)}")
|
39 |
+
st.write(f"Smallest eigenvalue: {min(eigenvalues)}")
|
40 |
+
|
41 |
+
# Display the histogram of eigenvalues
|
42 |
+
st.write("### Eigenvalue Histogram")
|
43 |
+
plt.hist(eigenvalues, bins=100)
|
44 |
+
plt.xlim(0, 2) # Eigenvalues between 0 and 2
|
45 |
+
st.pyplot(plt)
|
46 |
+
|
47 |
+
elif option == "Create your own":
|
48 |
+
# Allow the user to customize the number of nodes and edges
|
49 |
+
n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100)
|
50 |
+
m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500)
|
51 |
+
|
52 |
+
if st.button("Generate"):
|
53 |
+
# Generate a random graph with the custom number of nodes and edges
|
54 |
+
G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040) # Seed for reproducibility
|
55 |
+
|
56 |
+
# Calculate the normalized Laplacian matrix
|
57 |
+
L = nx.normalized_laplacian_matrix(G_custom)
|
58 |
+
eigenvalues = numpy.linalg.eigvals(L.toarray())
|
59 |
+
|
60 |
+
# Print largest and smallest eigenvalues
|
61 |
+
st.write(f"Largest eigenvalue: {max(eigenvalues)}")
|
62 |
+
st.write(f"Smallest eigenvalue: {min(eigenvalues)}")
|
63 |
+
|
64 |
+
# Display the histogram of eigenvalues
|
65 |
+
st.write("### Eigenvalue Histogram")
|
66 |
+
plt.hist(eigenvalues, bins=100)
|
67 |
+
plt.xlim(0, 2) # Eigenvalues between 0 and 2
|
68 |
+
st.pyplot(plt)
|
69 |
+
|
70 |
+
# Display Drawing: Eigenvalues if selected
|
71 |
+
if sidebar_option == "Drawing: Eigenvalues":
|
72 |
+
display_eigenvalue_analysis()
|
73 |
+
|
74 |
# Function to display properties and graph for Basic: Properties
|
75 |
def display_graph_properties(G):
|
76 |
pathlengths = []
|