import streamlit as st # import itertools as it import matplotlib.pyplot as plt import networkx as nx import numpy as np from operator import itemgetter import math # Import the math module from matplotlib import animation from mpl_toolkits.mplot3d import Axes3D from streamlit.components.v1 import html import matplotlib.colors as mpl # Sidebar for selecting an option sidebar_option = st.sidebar.radio("Select an option", ["Introductory Tutorial", "Basic: Properties", "Basic: Read and write graphs", "Basic: Simple graph", "Basic: Simple graph Directed", "Drawing: Custom Node Position", "Drawing: Cluster Layout", "Drawing: Degree Analysis", "Drawing: Ego Graph", "Drawing: Eigenvalues", "Drawing: Four Grids", "Drawing: House With Colors", "Drawing: Labels And Colors", "Drawing: Multipartite Layout", "Drawing: Node Colormap", "Drawing: Rainbow Coloring", "Drawing: Random Geometric Graph","Drawing: Self-loops", "Drawing: Simple Path", "Drawing: Spectral Embedding", "Drawing: Traveling Salesman Problem", "Drawing: Weighted Graph", "3D Drawing: Animations of 3D Rotation", "3D Drawing: Basic Matplotlib", "Graph: DAG - Topological Layout", "Graph: Erdos Renyi", "Graph: Karate Club", "Graph: Minimum Spanning Tree", "Graph: Triads", "Algorithms: Cycle Detection", "Algorithms: Greedy Coloring"]) # Display content when "Select an option" is chosen if sidebar_option == "Introductory Tutorial": st.title("Graph Visualization and Analysis Options") # Add content descriptions descriptions = [ ("Basic: Properties", "This option provides insights into the foundational aspects of a graph. You can count nodes (individual points) and edges (connections between nodes). For example, in a graph representing a social network, the nodes could be people, and the edges could represent friendships. The degree distribution tells how many connections each node has, helping identify influential nodes."), ("Basic: Read and Write Graphs", "This feature lets you load graphs from files or save your current graph for later use. For instance, if you have a graph stored in a GML file, you can load it and analyze it in your program. Similarly, you can save graphs as adjacency lists or edge lists for portability."), ("Basic: Simple Graph", "This generates simple, undirected graphs where edges don’t have a direction. For example, a graph showing roads between cities where travel is possible in both directions. You can create specific structures like a star graph (one central hub) or a cycle graph (nodes connected in a loop)."), ("Basic: Simple Graph Directed", "Directed graphs have edges with a direction. They are useful for workflows or dependencies. For example, in a project plan, a directed graph might show tasks with arrows indicating the order in which they need to be completed."), ("Drawing: Custom Node Position", "This feature allows you to manually set where each node appears on the graph. For example, in a family tree, you might want to position nodes to reflect generational hierarchies rather than relying on an automatic layout."), ("Drawing: Cluster Layout", "Nodes are grouped into clusters based on their connections. For instance, in a network of social media users, this could highlight friend groups. Each group would appear as a tight cluster in the visualization."), ("Drawing: Degree Analysis", "This visualizes the connections (or degree) of nodes. For example, in a transportation network, hubs like airports can be highlighted because they have the highest degree, representing more connections to other nodes."), ("Drawing: Ego Graph", "Focuses on a single node and its immediate connections. For instance, if you want to see all direct friends of a specific person on a social network, this feature isolates that person and their relationships."), ("Drawing: Eigenvalues", "Eigenvalues come from the graph’s Laplacian matrix and reveal structural properties. For example, in community detection, eigenvalues can help identify clusters or measure the connectivity of a graph."), ("Drawing: House With Colors", "Displays a basic house graph, a simple structure that resembles a house. For example, you could use it for teaching graph theory basics, with color-coded nodes and edges representing different parts of the structure."), ("Drawing: Labels and Colors", "This lets you customize the appearance of nodes and edges by adding labels or colors. For example, in a roadmap, cities (nodes) can be color-coded by region, and roads (edges) can have labels for distance."), ("Drawing: Multipartite Layout", "Creates multipartite graphs where nodes are divided into layers, and edges only connect nodes from different layers. For instance, in a university, one layer could represent professors and another students, with edges indicating which professor teaches which student."), ("Drawing: Node Colormap", "Applies color gradients to nodes based on their properties, like degree or centrality. For example, nodes in a social network can be shaded to show influence, with darker colors for highly connected individuals."), ("Drawing: Rainbow Coloring", "This colorful feature assigns different colors to edges, helping differentiate them. For example, in a circular graph, this can show the relative positions of connections, making it visually appealing."), ("Drawing: Random Geometric Graph", "Generates graphs where nodes are connected if they’re within a specific distance. For example, in a wireless sensor network, nodes represent sensors, and edges show connectivity based on signal range."), ("Drawing: Self-loops", "Visualizes edges that start and end at the same node. For example, in a citation network, a self-loop could represent a researcher citing their previous work."), ("Drawing: Simple Path", "Displays simple linear graphs where nodes connect in a sequence. For example, it could represent a production line where each step depends on the previous one."), ("Drawing: Spectral Embedding", "Uses a mathematical technique to arrange nodes in a lower-dimensional space. For example, you can visualize clusters in a high-dimensional dataset in a way that preserves their relationships."), ("Drawing: Traveling Salesman Problem", "Visualizes solutions to the Traveling Salesman Problem (TSP), where the goal is to find the shortest route visiting every node once. For example, a delivery route optimization can use this to minimize travel costs."), ("Drawing: Weighted Graph", "Shows graphs with weighted edges. For example, in a flight network, edge weights can represent ticket prices or distances, with thicker edges for higher weights."), ("3D Drawing: Animations of 3D Rotation", "Generates 3D graphs with rotation animations. For example, you can visualize molecule structures or spatial relationships dynamically."), ("3D Drawing: Basic Matplotlib", "Creates 3D graph visualizations using Matplotlib, letting you explore spatial relationships. For example, you could map a city’s buildings in 3D space."), ("Graph: DAG - Topological Layout", "Displays Directed Acyclic Graphs (DAGs) in a topological order. For example, it can represent workflows or dependency graphs where tasks need to follow a sequence."), ("Graph: Erdos Renyi", "Generates random graphs where edges appear based on a probability. For example, you can model random connections in a network to study statistical properties."), ("Graph: Karate Club", "This graph is a classic benchmark in network science, showing relationships in a club. It’s often used for community detection and teaching graph analysis."), ("Graph: Minimum Spanning Tree", "Extracts a tree from the graph connecting all nodes with the minimum total edge weight. For example, this is used in network design to minimize cable or pipeline costs."), ("Graph: Triads", "Analyzes three-node structures (triads). For example, in social networks, closed triads (triangles) indicate strong relationships among three people."), ("Algorithms: Cycle Detection", "Detects cycles in graphs, useful for spotting feedback loops or circular dependencies. For example, in a dependency graph, it can help identify tasks that reference each other."), ("Algorithms: Greedy Coloring", "Colors nodes so that no two adjacent nodes share the same color. For example, in exam scheduling, this ensures no two overlapping exams are assigned the same room.") ] for title, desc in descriptions: st.subheader(title) # Removed the ### here st.write(desc) st.write("---") def plot_greedy_coloring(graph): # Apply greedy coloring graph_coloring = nx.greedy_color(graph) unique_colors = set(graph_coloring.values()) # Assign colors to nodes based on the greedy coloring graph_color_to_mpl_color = dict(zip(unique_colors, mpl.TABLEAU_COLORS)) node_colors = [graph_color_to_mpl_color[graph_coloring[n]] for n in graph.nodes()] # Layout of the graph pos = nx.spring_layout(graph, seed=14) # Draw the graph nx.draw( graph, pos, with_labels=True, node_size=500, node_color=node_colors, edge_color="grey", font_size=12, font_color="#333333", width=2, ) plt.title("Greedy Coloring of Graph") st.pyplot(plt) def algorithms_greedy_coloring(): st.title("Algorithms: Greedy Coloring") # Option to choose between creating your own or using the default example graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="The default example shows a predefined graph, or you can create your own." ) if graph_mode == "Default Example": # Create a predefined graph (Dodecahedral graph) for the greedy coloring example G = nx.dodecahedral_graph() st.write("Default Graph: Dodecahedral Graph with Greedy Coloring.") plot_greedy_coloring(G) elif graph_mode == "Create Your Own": st.write("### Create Your Own Graph") # Input for creating a custom graph nodes_input = st.text_area("Enter nodes (e.g., 1, 2, 3, 4):") edges_input = st.text_area("Enter edges (e.g., (1, 2), (2, 3), (3, 4)):").strip() if st.button("Generate Graph"): if nodes_input and edges_input: try: # Clean and parse the input for nodes (strip spaces, remove empty strings) nodes = [node.strip() for node in nodes_input.split(",") if node.strip()] nodes = list(map(int, nodes)) # Clean and parse the input for edges (strip spaces and remove empty strings) edges = [edge.strip() for edge in edges_input.split("),") if edge.strip()] edges = [tuple(map(int, edge.strip("()").split(","))) for edge in edges] G = nx.Graph() G.add_nodes_from(nodes) G.add_edges_from(edges) st.write("Custom Graph:", G.edges()) plot_greedy_coloring(G) except Exception as e: st.error(f"Error creating the graph: {e}") else: st.error("Please enter valid nodes and edges.") if sidebar_option == "Algorithms: Greedy Coloring": algorithms_greedy_coloring() # Helper function to draw and display graph def draw_graph(G, pos=None, title="Graph Visualization"): plt.figure(figsize=(8, 6)) nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500, font_size=10, font_weight='bold') st.pyplot(plt) def plot_cycle_detection(graph): # Draw the graph pos = nx.spring_layout(graph, seed=8020) nx.draw(graph, pos, with_labels=True, node_size=2000, node_color="lightblue") # Find all cycles in the directed graph try: cycles = list(nx.simple_cycles(graph)) if cycles: st.write("Cycles Detected:") for cycle in cycles: st.write(cycle) # Highlight each cycle in red for cycle in cycles: edges_in_cycle = [(cycle[i], cycle[i + 1] if i + 1 < len(cycle) else cycle[0]) for i in range(len(cycle))] nx.draw_networkx_edges(graph, pos, edgelist=edges_in_cycle, edge_color="r", width=2) else: st.write("No cycles detected") except Exception as e: st.error(f"Error detecting cycles: {e}") # Display the graph plt.title("Cycle Detection in Directed Graph") st.pyplot(plt) def algorithms_cycle_detection(): st.title("Algorithms: Cycle Detection") # Option to choose between creating your own or using the default example graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="The default example shows a predefined graph, or you can create your own." ) if graph_mode == "Default Example": # Create a predefined graph with multiple cycles G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2)]) st.write("Default Graph: A simple directed graph with multiple cycles.") plot_cycle_detection(G) elif graph_mode == "Create Your Own": st.write("### Create Your Own Graph") # Input for creating custom graph edges_input = st.text_area("Enter directed edges (e.g., (1, 2), (2, 3), (3, 1), (3, 4)):").strip() if st.button("Generate Graph"): if edges_input: try: edges = [] # Ensure correct formatting of the input string edge_strings = edges_input.split("),") for edge_str in edge_strings: edge_str = edge_str.strip() if edge_str: # Handle the case where the edge might be missing a closing parenthesis if edge_str[-1] != ")": edge_str += ")" # Remove the opening and closing parentheses edge_tuple = edge_str.strip("()").split(",") if len(edge_tuple) == 2: try: # Safely convert to integers and add the edge edge_tuple = tuple(map(int, edge_tuple)) edges.append(edge_tuple) except ValueError: st.error(f"Invalid edge format: {edge_str}") return if edges: # Create the graph G = nx.DiGraph(edges) st.write("Custom Graph:", G.edges()) plot_cycle_detection(G) else: st.error("No valid edges provided.") except Exception as e: st.error(f"Error creating the graph: {e}") else: st.error("Please enter valid directed edges.") # Display the corresponding page based on sidebar option if sidebar_option == "Algorithms: Cycle Detection": algorithms_cycle_detection() def triads_graph(): st.title("Graph: Triads") # Sidebar selection for Default Example or Custom Triads graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows predefined triads, or you can create your own triads." ) if graph_mode == "Default Example": # Define the triads triads = { "003": [], "012": [(1, 2)], "102": [(1, 2), (2, 1)], "021D": [(3, 1), (3, 2)], "021U": [(1, 3), (2, 3)], "021C": [(1, 3), (3, 2)], "111D": [(1, 2), (2, 1), (3, 1)], "111U": [(1, 2), (2, 1), (1, 3)], "030T": [(1, 2), (3, 2), (1, 3)], "030C": [(1, 3), (3, 2), (2, 1)], "201": [(1, 2), (2, 1), (3, 1), (1, 3)], "120D": [(1, 2), (2, 1), (3, 1), (3, 2)], "120U": [(1, 2), (2, 1), (1, 3), (2, 3)], "120C": [(1, 2), (2, 1), (1, 3), (3, 2)], "210": [(1, 2), (2, 1), (1, 3), (3, 2), (2, 3)], "300": [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)], } fig, axes = plt.subplots(4, 4, figsize=(10, 10)) for (title, triad), ax in zip(triads.items(), axes.flatten()): G = nx.DiGraph() G.add_nodes_from([1, 2, 3]) G.add_edges_from(triad) nx.draw_networkx( G, ax=ax, with_labels=True, # Labels the vertices node_color=["green"], node_size=200, arrowsize=20, width=2, pos=nx.planar_layout(G), ) ax.set_xlim(val * 1.2 for val in ax.get_xlim()) ax.set_ylim(val * 1.2 for val in ax.get_ylim()) ax.text( 0, 0, title, fontsize=15, fontweight="extra bold", horizontalalignment="center", bbox={"boxstyle": "square,pad=0.3", "fc": "none"}, ) fig.tight_layout() st.pyplot(fig) elif graph_mode == "Create Your Own": st.write("### Create Your Own Triads") # Input: Enter triads as a dictionary (e.g., {'triad_name': [(1, 2), (2, 1)]}) triad_input = st.text_area( "Enter your triads in the format: {'triad_name': [(edge1), (edge2), ...]}", value="{'003': [], '012': [(1, 2)]}" ) # Generate Button if st.button("Generate Graph"): # Try to evaluate the input as a dictionary of triads try: custom_triads = eval(triad_input) if isinstance(custom_triads, dict) and all(isinstance(value, list) and all(isinstance(edge, tuple) and len(edge) == 2 for edge in value) for value in custom_triads.values()): fig, axes = plt.subplots(len(custom_triads), 1, figsize=(10, len(custom_triads) * 5)) if len(custom_triads) == 1: # Handle case where only one triad is entered axes = [axes] for (title, triad), ax in zip(custom_triads.items(), axes): G = nx.DiGraph() G.add_nodes_from([1, 2, 3]) G.add_edges_from(triad) nx.draw_networkx( G, ax=ax, with_labels=True, # Labels the vertices node_color=["green"], node_size=200, arrowsize=20, width=2, pos=nx.planar_layout(G), ) ax.set_xlim(val * 1.2 for val in ax.get_xlim()) ax.set_ylim(val * 1.2 for val in ax.get_ylim()) ax.text( 0, 0, title, fontsize=15, fontweight="extra bold", horizontalalignment="center", bbox={"boxstyle": "square,pad=0.3", "fc": "none"}, ) fig.tight_layout() st.pyplot(fig) else: st.error("Invalid format. Please enter a dictionary of triads in the format {'triad_name': [(edge1), (edge2), ...]}.") except Exception as e: st.error(f"Error parsing input: {e}") # Display the corresponding page based on sidebar option if sidebar_option == "Graph: Triads": triads_graph() def minimum_spanning_tree_graph(): st.title("Graph: Minimum Spanning Tree") # Sidebar selection for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows a graph and its minimum spanning tree, or you can create your own graph." ) if graph_mode == "Default Example": # Create a default graph G = nx.Graph() G.add_edges_from( [ (0, 1, {"weight": 4}), (0, 7, {"weight": 8}), (1, 7, {"weight": 11}), (1, 2, {"weight": 8}), (2, 8, {"weight": 2}), (2, 5, {"weight": 4}), (2, 3, {"weight": 7}), (3, 4, {"weight": 9}), (3, 5, {"weight": 14}), (4, 5, {"weight": 10}), (5, 6, {"weight": 2}), (6, 8, {"weight": 6}), (7, 8, {"weight": 7}), ] ) # Find the minimum spanning tree T = nx.minimum_spanning_tree(G) # Visualize the graph and the minimum spanning tree pos = nx.spring_layout(G) fig, ax = plt.subplots(figsize=(8, 8)) nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax) nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax) nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax) nx.draw_networkx_edge_labels( G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax ) nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax) ax.set_title("Graph and Minimum Spanning Tree") plt.axis("off") st.pyplot(fig) elif graph_mode == "Create Your Own": st.write("### Create Your Own Graph") # Allow user to input the number of nodes and edges for custom graph num_nodes = st.number_input("Number of nodes", min_value=2, value=5) num_edges = st.number_input("Number of edges", min_value=1, value=6) # Create empty graph G = nx.Graph() # Allow user to input the edges and their weights manually edges = [] for i in range(num_edges): source = st.number_input(f"Source node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"source_{i}") dest = st.number_input(f"Destination node for edge {i+1}", min_value=0, max_value=num_nodes-1, key=f"dest_{i}") weight = st.number_input(f"Weight for edge ({source}, {dest})", min_value=1, value=1, key=f"weight_{i}") edges.append((source, dest, {"weight": weight})) # Add edges to the graph G.add_edges_from(edges) # Add nodes to the graph (to ensure all nodes are included, even if not explicitly added by the user) G.add_nodes_from(range(num_nodes)) # Button to generate the graph and calculate MST if st.button("Generate Graph"): # Find the minimum spanning tree T = nx.minimum_spanning_tree(G) # Visualize the graph and the minimum spanning tree pos = nx.spring_layout(G) fig, ax = plt.subplots(figsize=(8, 8)) nx.draw_networkx_nodes(G, pos, node_color="lightblue", node_size=500, ax=ax) nx.draw_networkx_edges(G, pos, edge_color="grey", ax=ax) nx.draw_networkx_labels(G, pos, font_size=12, font_family="sans-serif", ax=ax) nx.draw_networkx_edge_labels( G, pos, edge_labels={(u, v): d["weight"] for u, v, d in G.edges(data=True)}, ax=ax ) nx.draw_networkx_edges(T, pos, edge_color="green", width=2, ax=ax) ax.set_title("Custom Graph and Minimum Spanning Tree") plt.axis("off") st.pyplot(fig) # Display the corresponding page based on sidebar option if sidebar_option == "Graph: Minimum Spanning Tree": minimum_spanning_tree_graph() def karate_club_graph(): st.title("Graph: Karate Club") # Sidebar selection for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows the Karate Club graph, or you can create your own graph." ) if graph_mode == "Default Example": # Load the Karate Club graph G = nx.karate_club_graph() # Display node degree st.write("### Node Degree") for v in G: st.write(f"Node {v:4}: Degree = {G.degree(v)}") # Visualize the graph using circular layout st.write("### Graph Visualization") fig, ax = plt.subplots() nx.draw_circular(G, with_labels=True, ax=ax, node_color="skyblue", edge_color="gray") ax.set_title("Karate Club Graph") st.pyplot(fig) elif graph_mode == "Create Your Own": st.write("### Create Your Own Graph") # Allow user to input the number of nodes and edges for custom graph num_nodes = st.number_input("Number of nodes", min_value=2, value=10) num_edges = st.number_input("Number of edges", min_value=1, value=15) seed = st.number_input("Seed for Random Graph (optional)", value=20160) # Generate graph button if st.button("Generate Graph"): # Create random graph with user input G = nx.gnm_random_graph(num_nodes, num_edges, seed=seed) # Display node degree st.write("### Node Degree") for v in G: st.write(f"Node {v:4}: Degree = {G.degree(v)}") # Visualize the graph using circular layout st.write("### Graph Visualization") fig, ax = plt.subplots() nx.draw_circular(G, with_labels=True, ax=ax, node_color="lightgreen", edge_color="gray") ax.set_title("Custom Graph") st.pyplot(fig) # Display the corresponding page based on sidebar option if sidebar_option == "Graph: Karate Club": karate_club_graph() def erdos_renyi_graph(): st.title("Graph: Erdos Renyi") # Sidebar selection for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows a random graph, or you can create your own Erdos-Renyi graph." ) if graph_mode == "Default Example": # Default random graph parameters n = 10 # 10 nodes m = 20 # 20 edges seed = 20160 # seed random number generators for reproducibility # Create a button for generating the graph if st.button("Generate Graph"): # Create random graph G = nx.gnm_random_graph(n, m, seed=seed) # Display node properties st.write("### Node Degree and Clustering Coefficient") for v in nx.nodes(G): st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}") # Display adjacency list st.write("### Adjacency List") adj_list = "\n".join([line for line in nx.generate_adjlist(G)]) st.text(adj_list) # Visualize the graph pos = nx.spring_layout(G, seed=seed) # Seed for reproducible layout fig, ax = plt.subplots() nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray") ax.set_title("Erdos-Renyi Random Graph") st.pyplot(fig) elif graph_mode == "Create Your Own": st.write("### Create Your Own Random Erdos-Renyi Graph") # Allow user to input the number of nodes and edges n = st.number_input("Number of nodes (n)", min_value=2, value=10) m = st.number_input("Number of edges (m)", min_value=1, value=20) seed = st.number_input("Seed", value=20160) # Create a button for generating the graph if st.button("Generate Graph"): # Create random graph G = nx.gnm_random_graph(n, m, seed=seed) # Display node properties st.write("### Node Degree and Clustering Coefficient") for v in nx.nodes(G): st.write(f"Node {v}: Degree = {nx.degree(G, v)}, Clustering Coefficient = {nx.clustering(G, v)}") # Display adjacency list st.write("### Adjacency List") adj_list = "\n".join([line for line in nx.generate_adjlist(G)]) st.text(adj_list) # Visualize the graph pos = nx.spring_layout(G, seed=seed) # Seed for reproducible layout fig, ax = plt.subplots() nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color="skyblue", edge_color="gray") ax.set_title("Erdos-Renyi Random Graph") st.pyplot(fig) # Display the corresponding page based on sidebar option if sidebar_option == "Graph: Erdos Renyi": erdos_renyi_graph() def dag_topological_layout(): st.title("Graph: DAG - Topological Layout") # Sidebar selection for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows DAG layout in topological order, or you can create your own DAG." ) if graph_mode == "Default Example": # Default DAG example G = nx.DiGraph( [ ("f", "a"), ("a", "b"), ("a", "e"), ("b", "c"), ("b", "d"), ("d", "e"), ("f", "c"), ("f", "g"), ("h", "f"), ] ) # Add layer attribute for multipartite_layout for layer, nodes in enumerate(nx.topological_generations(G)): for node in nodes: G.nodes[node]["layer"] = layer # Compute the multipartite_layout using the "layer" node attribute pos = nx.multipartite_layout(G, subset_key="layer") # Draw the graph fig, ax = plt.subplots() nx.draw_networkx(G, pos=pos, ax=ax) ax.set_title("DAG layout in topological order") fig.tight_layout() st.pyplot(fig) elif graph_mode == "Create Your Own": st.write("### Custom DAG Creation") # Allow the user to input the number of nodes num_nodes = st.number_input("Enter the number of nodes", min_value=2, value=5) # Create node names based on the number of nodes nodes = [str(i) for i in range(num_nodes)] st.write(f"### Nodes: {nodes}") st.write("#### Add Edges between Nodes") # Allow the user to select pairs of nodes to add edges edges = [] for i in range(num_nodes): for j in range(i + 1, num_nodes): edge = (nodes[i], nodes[j]) if st.checkbox(f"Add edge from {edge[0]} to {edge[1]}", value=False): edges.append(edge) # Create the custom DAG G_custom = nx.DiGraph() G_custom.add_edges_from(edges) # Add layer attribute for multipartite_layout for layer, nodes in enumerate(nx.topological_generations(G_custom)): for node in nodes: G_custom.nodes[node]["layer"] = layer # Compute the multipartite_layout using the "layer" node attribute pos_custom = nx.multipartite_layout(G_custom, subset_key="layer") # Draw the custom DAG fig_custom, ax_custom = plt.subplots() nx.draw_networkx(G_custom, pos=pos_custom, ax=ax_custom) ax_custom.set_title("Custom DAG layout in topological order") fig_custom.tight_layout() st.pyplot(fig_custom) # Display the corresponding page based on sidebar option if sidebar_option == "Graph: DAG - Topological Layout": dag_topological_layout() if sidebar_option == "3D Drawing: Animations of 3D Rotation": st.title("3D Drawing: Animations of 3D Rotation") # Provide options for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows a dodecahedral graph, or you can create your own custom graph." ) # Define the function to create animation def generate_animation(G, pos, frames=100): nodes = np.array([pos[v] for v in G]) edges = np.array([(pos[u], pos[v]) for u, v in G.edges()]) fig = plt.figure() ax = fig.add_subplot(111, projection="3d") def init(): ax.scatter(*nodes.T, alpha=0.2, s=100, color="blue") for vizedge in edges: ax.plot(*vizedge.T, color="gray") ax.grid(False) ax.set_axis_off() plt.tight_layout() return def _frame_update(index): ax.view_init(index * 0.2, index * 0.5) return ani = animation.FuncAnimation( fig, _frame_update, init_func=init, interval=50, cache_frame_data=False, frames=frames, ) return ani # Default Example if graph_mode == "Default Example": G = nx.dodecahedral_graph() pos = nx.spectral_layout(G, dim=3) ani = generate_animation(G, pos) # Create Your Own Example else: st.write("### Customize Your Graph") num_nodes = st.slider("Number of Nodes", min_value=5, max_value=50, value=20) edge_prob = st.slider("Edge Probability", min_value=0.1, max_value=1.0, value=0.3) # Generate custom graph G = nx.erdos_renyi_graph(num_nodes, edge_prob) pos = nx.spectral_layout(G, dim=3) ani = generate_animation(G, pos) # Display animation in Streamlit with st.spinner("Rendering animation..."): ani.save("animation.gif", writer="imagemagick") st.image("animation.gif", caption="3D Graph Rotation", use_container_width=True) # Default example code def default_example(): G = nx.cycle_graph(20) # 3d spring layout pos = nx.spring_layout(G, dim=3, seed=779) # Extract node and edge positions from the layout node_xyz = np.array([pos[v] for v in sorted(G)]) edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) # Create the 3D figure fig = plt.figure() ax = fig.add_subplot(111, projection="3d") # Plot the nodes - alpha is scaled by "depth" automatically ax.scatter(*node_xyz.T, s=100, ec="w") # Plot the edges for vizedge in edge_xyz: ax.plot(*vizedge.T, color="tab:gray") def _format_axes(ax): """Visualization options for the 3D axes.""" # Turn gridlines off ax.grid(False) # Suppress tick labels for dim in (ax.xaxis, ax.yaxis, ax.zaxis): dim.set_ticks([]) # Set axes labels ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") _format_axes(ax) fig.tight_layout() st.pyplot(fig) # Create your own graph option def create_own_graph(): # Input fields to customize the graph nodes = st.number_input("Number of nodes", min_value=2, max_value=50, value=20) seed = st.number_input("Seed for layout", value=779) # Add a button to generate the graph generate_button = st.button("Generate Graph") if generate_button: # Generate graph and layout G = nx.cycle_graph(nodes) pos = nx.spring_layout(G, dim=3, seed=seed) # Extract node and edge positions node_xyz = np.array([pos[v] for v in sorted(G)]) edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) # Create the 3D figure fig = plt.figure() ax = fig.add_subplot(111, projection="3d") # Plot the nodes ax.scatter(*node_xyz.T, s=100, ec="w") # Plot the edges for vizedge in edge_xyz: ax.plot(*vizedge.T, color="tab:gray") def _format_axes(ax): """Visualization options for the 3D axes.""" ax.grid(False) for dim in (ax.xaxis, ax.yaxis, ax.zaxis): dim.set_ticks([]) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") _format_axes(ax) fig.tight_layout() st.pyplot(fig) if sidebar_option == "3D Drawing: Basic Matplotlib": st.title("3D Drawing: Basic Matplotlib") # Provide options for Default Example or Custom Graph graph_mode = st.radio( "Choose a Mode:", ("Default Example", "Create Your Own"), help="Default example shows a cycle graph, or you can create your own custom graph." ) # Display the chosen option if graph_mode == "Default Example": default_example() elif graph_mode == "Create Your Own": create_own_graph() # Function to display Weighted Graph def display_weighted_graph(): st.title("Drawing: Weighted Graph") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default weighted graph example G = nx.Graph() G.add_edge("a", "b", weight=0.6) G.add_edge("a", "c", weight=0.2) G.add_edge("c", "d", weight=0.1) G.add_edge("c", "e", weight=0.7) G.add_edge("c", "f", weight=0.9) G.add_edge("a", "d", weight=0.3) elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] > 0.5] esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d["weight"] <= 0.5] pos = nx.spring_layout(G, seed=7) # positions for all nodes - seed for reproducibility # nodes nx.draw_networkx_nodes(G, pos, node_size=700) # edges nx.draw_networkx_edges(G, pos, edgelist=elarge, width=6) nx.draw_networkx_edges( G, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed" ) # node labels nx.draw_networkx_labels(G, pos, font_size=20, font_family="sans-serif") # edge weight labels edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos, edge_labels) ax = plt.gca() ax.margins(0.08) plt.axis("off") plt.tight_layout() st.pyplot(plt) elif option == "Create your own": # User can create their own graph with edges and weights edge_input = st.text_area( "Enter edges with weights (format: node1,node2,weight;node1,node2,weight;...)", "a,b,0.6;a,c,0.2;c,d,0.1;c,e,0.7;c,f,0.9;a,d,0.3" ) # Parse the input string edges = edge_input.split(";") edge_list = [] for edge in edges: node1, node2, weight = edge.split(",") edge_list.append((node1.strip(), node2.strip(), float(weight.strip()))) # Add a button to generate the graph generate_button = st.button("Generate Graph") if generate_button: G_custom = nx.Graph() # Add edges to the graph for node1, node2, weight in edge_list: G_custom.add_edge(node1, node2, weight=weight) # Create layout for visualization pos = nx.spring_layout(G_custom, seed=7) # Determine edges based on weight elarge = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] > 0.5] esmall = [(u, v) for (u, v, d) in G_custom.edges(data=True) if d["weight"] <= 0.5] # Draw the graph nx.draw_networkx_nodes(G_custom, pos, node_size=700) nx.draw_networkx_edges(G_custom, pos, edgelist=elarge, width=6) nx.draw_networkx_edges( G_custom, pos, edgelist=esmall, width=6, alpha=0.5, edge_color="b", style="dashed" ) nx.draw_networkx_labels(G_custom, pos, font_size=20, font_family="sans-serif") edge_labels = nx.get_edge_attributes(G_custom, "weight") nx.draw_networkx_edge_labels(G_custom, pos, edge_labels) ax = plt.gca() ax.margins(0.08) plt.axis("off") plt.tight_layout() st.pyplot(plt) # Display Drawing: Weighted Graph if selected if sidebar_option == "Drawing: Weighted Graph": display_weighted_graph() from networkx.algorithms.approximation import christofides # Function to display Traveling Salesman Problem def display_tsp(): st.title("Drawing: Traveling Salesman Problem") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default example of random geometric graph with TSP solution G = nx.random_geometric_graph(20, radius=0.4, seed=3) pos = nx.get_node_attributes(G, "pos") # Depot should be at (0.5, 0.5) pos[0] = (0.5, 0.5) H = G.copy() # Calculating the distances between the nodes as edge's weight. for i in range(len(pos)): for j in range(i + 1, len(pos)): dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) dist = dist G.add_edge(i, j, weight=dist) # Find TSP cycle using Christofides' approximation cycle = christofides(G, weight="weight") edge_list = list(nx.utils.pairwise(cycle)) # Draw closest edges on each node only nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) # Draw the route nx.draw_networkx( G, pos, with_labels=True, edgelist=edge_list, edge_color="red", node_size=200, width=3, ) st.pyplot(plt) st.write("The route of the traveler is:", cycle) elif option == "Create your own": # User can create their own graph num_nodes = st.slider("Number of nodes:", min_value=3, max_value=30, value=20) radius = st.slider("Edge radius:", min_value=0.1, max_value=1.0, value=0.4) # Add a button to generate a new graph generate_button = st.button("Generate Graph") if generate_button: # Create random geometric graph based on user input G_custom = nx.random_geometric_graph(num_nodes, radius, seed=3) pos = nx.get_node_attributes(G_custom, "pos") # Depot should be at (0.5, 0.5) pos[0] = (0.5, 0.5) H = G_custom.copy() # Calculating the distances between the nodes as edge's weight. for i in range(len(pos)): for j in range(i + 1, len(pos)): dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) dist = dist G_custom.add_edge(i, j, weight=dist) # Find TSP cycle using Christofides' approximation cycle = christofides(G_custom, weight="weight") edge_list = list(nx.utils.pairwise(cycle)) # Draw closest edges on each node only nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) # Draw the TSP route nx.draw_networkx( G_custom, pos, with_labels=True, edgelist=edge_list, edge_color="red", node_size=200, width=3, ) st.pyplot(plt) st.write("The route of the traveler is:", cycle) # Display Drawing: Traveling Salesman Problem if selected if sidebar_option == "Drawing: Traveling Salesman Problem": display_tsp() # Function to display Drawing: Spectral Embedding def display_spectral_embedding(): st.title("Drawing: Spectral Embedding") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default example of spectral embedding with a grid graph options = {"node_color": "C0", "node_size": 100} # No labels G = nx.grid_2d_graph(6, 6) fig, axs = plt.subplots(3, 3, figsize=(12, 12)) axs = axs.flatten() for i in range(7): # Looping over 7 images if i == 0: nx.draw_spectral(G, **options, ax=axs[i]) elif i == 1: G.remove_edge((2, 2), (2, 3)) nx.draw_spectral(G, **options, ax=axs[i]) elif i == 2: G.remove_edge((3, 2), (3, 3)) nx.draw_spectral(G, **options, ax=axs[i]) elif i == 3: G.remove_edge((2, 2), (3, 2)) nx.draw_spectral(G, **options, ax=axs[i]) elif i == 4: G.remove_edge((2, 3), (3, 3)) nx.draw_spectral(G, **options, ax=axs[i]) elif i == 5: G.remove_edge((1, 2), (1, 3)) nx.draw_spectral(G, **options, ax=axs[i]) elif i == 6: G.remove_edge((4, 2), (4, 3)) nx.draw_spectral(G, **options, ax=axs[i]) # Hide the last two subplots (8th and 9th) for j in range(7, 9): fig.delaxes(axs[j]) # Delete the extra axes st.pyplot(fig) elif option == "Create your own": # User can interactively modify the grid and see the results grid_size = st.slider("Choose grid size (n x n):", min_value=3, max_value=10, value=6) G_custom = nx.grid_2d_graph(grid_size, grid_size) # List all edges to allow removal all_edges = list(G_custom.edges()) # Collect user input for edges to remove (before showing the "Generate" button) selected_edges_per_graph = [] for i in range(7): # Loop over 7 graphs selected_edges = st.multiselect(f"Select edges to remove for graph {i+1}:", options=[str(edge) for edge in all_edges]) selected_edges_per_graph.append(selected_edges) # Add "Generate" button after edge selection generate_button = st.button("Generate Graph") if generate_button: fig, axs = plt.subplots(3, 3, figsize=(12, 12)) axs = axs.flatten() # Loop through each subplot and allow edge removal individually for i in range(7): # Loop over 7 graphs edges_to_remove = [tuple(eval(edge)) for edge in selected_edges_per_graph[i]] # Remove the selected edges G_custom_copy = G_custom.copy() G_custom_copy.remove_edges_from(edges_to_remove) # Draw the graph with removed edges nx.draw_spectral(G_custom_copy, **{"node_color": "C0", "node_size": 100}, ax=axs[i]) # Hide the last two subplots (8th and 9th) for j in range(7, 9): fig.delaxes(axs[j]) # Delete the extra axes st.pyplot(fig) # Display Drawing: Spectral Embedding if selected if sidebar_option == "Drawing: Spectral Embedding": display_spectral_embedding() # Function to display Drawing: Simple Path def display_simple_path(): st.title("Drawing: Simple Path") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default example of a simple path graph G = nx.path_graph(8) pos = nx.spring_layout(G, seed=47) # Seed layout for reproducibility # Draw the graph nx.draw(G, pos=pos) st.pyplot(plt) elif option == "Create your own": # User can create their own path graph with a custom number of nodes num_nodes = st.number_input("Number of nodes in the path:", min_value=2, max_value=50, value=8) if st.button("Generate Graph"): # Generate a path graph with user-specified number of nodes G_custom = nx.path_graph(num_nodes) pos = nx.spring_layout(G_custom, seed=47) # Seed layout for reproducibility # Draw the graph nx.draw(G_custom, pos=pos) st.pyplot(plt) # Display Drawing: Simple Path if selected if sidebar_option == "Drawing: Simple Path": display_simple_path() # Function to display Drawing: Self-loops def display_self_loops(): st.title("Drawing: Self-loops") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default example of a graph with self-loops G = nx.complete_graph(3, create_using=nx.DiGraph) G.add_edge(0, 0) # Add a self-loop to node 0 pos = nx.circular_layout(G) # Draw the graph nx.draw(G, pos, with_labels=True) # Add self-loops to the remaining nodes edgelist = [(1, 1), (2, 2)] G.add_edges_from(edgelist) # Draw the newly added self-loops with different formatting nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed") st.pyplot(plt) elif option == "Create your own": # User can create their own graph with self-loops num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=20, value=3) add_self_loops = st.checkbox("Add self-loops to all nodes?", value=True) if st.button("Generate Graph"): # Generate a complete graph G = nx.complete_graph(num_nodes, create_using=nx.DiGraph) # Optionally add self-loops to all nodes if add_self_loops: for node in G.nodes(): G.add_edge(node, node) pos = nx.circular_layout(G) # Draw the graph with self-loops nx.draw(G, pos, with_labels=True) # Style self-loops differently edgelist = [(node, node) for node in G.nodes()] nx.draw_networkx_edges(G, pos, edgelist=edgelist, arrowstyle="<|-", style="dashed") st.pyplot(plt) # Display Drawing: Self-loops if selected if sidebar_option == "Drawing: Self-loops": display_self_loops() # Function to display Drawing: Random Geometric Graph def display_random_geometric_graph(): st.title("Drawing: Random Geometric Graph") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Default random geometric graph example G = nx.random_geometric_graph(200, 0.125, seed=896803) pos = nx.get_node_attributes(G, "pos") # Find node near the center (0.5, 0.5) dmin = 1 ncenter = 0 for n in pos: x, y = pos[n] d = (x - 0.5) ** 2 + (y - 0.5) ** 2 if d < dmin: ncenter = n dmin = d # Color by path length from node near center p = dict(nx.single_source_shortest_path_length(G, ncenter)) plt.figure(figsize=(8, 8)) nx.draw_networkx_edges(G, pos, alpha=0.4) nx.draw_networkx_nodes( G, pos, nodelist=list(p.keys()), node_size=80, node_color=list(p.values()), cmap=plt.cm.Reds_r, ) plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.axis("off") st.pyplot(plt) elif option == "Create your own": # User can create their own random geometric graph num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=200) distance = st.slider("Edge distance threshold (between 0 and 1):", 0.01, 1.0, 0.125) if st.button("Generate Graph"): # Generate the graph with user input G = nx.random_geometric_graph(num_nodes, distance, seed=896803) pos = nx.get_node_attributes(G, "pos") # Find node near the center (0.5, 0.5) dmin = 1 ncenter = 0 for n in pos: x, y = pos[n] d = (x - 0.5) ** 2 + (y - 0.5) ** 2 if d < dmin: ncenter = n dmin = d # Color by path length from node near center p = dict(nx.single_source_shortest_path_length(G, ncenter)) plt.figure(figsize=(8, 8)) nx.draw_networkx_edges(G, pos, alpha=0.4) nx.draw_networkx_nodes( G, pos, nodelist=list(p.keys()), node_size=80, node_color=list(p.values()), cmap=plt.cm.Reds_r, ) plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.axis("off") st.pyplot(plt) # Display Drawing: Random Geometric Graph if selected if sidebar_option == "Drawing: Random Geometric Graph": display_random_geometric_graph() # Function to display Drawing: Rainbow Coloring def display_rainbow_coloring(): st.title("Drawing: Rainbow Coloring") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Rainbow Coloring with default parameters node_dist_to_color = { 1: "tab:red", 2: "tab:orange", 3: "tab:olive", 4: "tab:green", 5: "tab:blue", 6: "tab:purple", } nnodes = 13 G = nx.complete_graph(nnodes) n = (nnodes - 1) // 2 ndist_iter = list(range(1, n + 1)) ndist_iter += ndist_iter[::-1] def cycle(nlist, n): return nlist[-n:] + nlist[:-n] nodes = list(G.nodes()) for i, nd in enumerate(ndist_iter): for u, v in zip(nodes, cycle(nodes, i + 1)): G[u][v]["color"] = node_dist_to_color[nd] pos = nx.circular_layout(G) # Create a figure with 1:1 aspect ratio to preserve the circle. fig, ax = plt.subplots(figsize=(8, 8)) node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0} nx.draw_networkx_nodes(G, pos, **node_opts) nx.draw_networkx_labels(G, pos, font_size=14) # Extract color from edge data edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)] nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors) ax.set_axis_off() fig.tight_layout() st.pyplot(plt) elif option == "Create your own": nnodes = st.number_input("Number of nodes (max=14):", min_value=2, max_value=50, value=13) # Allow users to create their own color map red = st.color_picker("Select a color for Red (1)", "#ff0000") orange = st.color_picker("Select a color for Orange (2)", "#ff7f00") olive = st.color_picker("Select a color for Olive (3)", "#808000") green = st.color_picker("Select a color for Green (4)", "#008000") blue = st.color_picker("Select a color for Blue (5)", "#0000ff") purple = st.color_picker("Select a color for Purple (6)", "#800080") node_dist_to_color = { 1: red, 2: orange, 3: olive, 4: green, 5: blue, 6: purple, } if st.button("Generate Graph"): G = nx.complete_graph(nnodes) n = (nnodes - 1) // 2 ndist_iter = list(range(1, n + 1)) ndist_iter += ndist_iter[::-1] def cycle(nlist, n): return nlist[-n:] + nlist[:-n] nodes = list(G.nodes()) for i, nd in enumerate(ndist_iter): for u, v in zip(nodes, cycle(nodes, i + 1)): G[u][v]["color"] = node_dist_to_color[nd] pos = nx.circular_layout(G) # Create a figure with 1:1 aspect ratio to preserve the circle. fig, ax = plt.subplots(figsize=(8, 8)) node_opts = {"node_size": 500, "node_color": "w", "edgecolors": "k", "linewidths": 2.0} nx.draw_networkx_nodes(G, pos, **node_opts) nx.draw_networkx_labels(G, pos, font_size=14) # Extract color from edge data edge_colors = [edgedata["color"] for _, _, edgedata in G.edges(data=True)] nx.draw_networkx_edges(G, pos, width=2.0, edge_color=edge_colors) ax.set_axis_off() fig.tight_layout() st.pyplot(plt) # Display Drawing: Rainbow Coloring if selected if sidebar_option == "Drawing: Rainbow Coloring": display_rainbow_coloring() # Function to display Drawing: Node Colormap def display_node_colormap(): st.title("Drawing: Node Colormap") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.cycle_graph(24) pos = nx.circular_layout(G) nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues) st.pyplot(plt) elif option == "Create your own": num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=100, value=24) color_map = st.selectbox("Select a colormap:", plt.colormaps(), index=plt.colormaps().index('Blues')) if st.button("Generate Graph"): # Create cycle graph with custom number of nodes G_custom = nx.cycle_graph(num_nodes) pos = nx.circular_layout(G_custom) nx.draw(G_custom, pos, node_color=range(num_nodes), node_size=800, cmap=plt.get_cmap(color_map)) st.pyplot(plt) # Display Drawing: Node Colormap if selected if sidebar_option == "Drawing: Node Colormap": display_node_colormap() # Function to create a multipartite graph def multilayered_graph(*subset_sizes): G = nx.Graph() layers = len(subset_sizes) node_id = 0 # Create nodes for each subset and add edges between nodes in adjacent layers for i, size in enumerate(subset_sizes): for j in range(size): G.add_node(node_id, layer=i) # Assign a layer attribute node_id += 1 # Add edges between nodes in adjacent layers node_ids = list(G.nodes()) for i in range(layers - 1): layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i] next_layer_nodes = [node for node in node_ids if G.nodes[node]["layer"] == i + 1] for node in layer_nodes: for next_node in next_layer_nodes: G.add_edge(node, next_node) return G # Function to display Multipartite Layout def display_multipartite_layout(): st.title("Drawing: Multipartite Layout") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3] subset_color = [ "gold", "violet", "violet", "violet", "violet", "limegreen", "limegreen", "darkorange" ] # Generate and plot multipartite graph G = multilayered_graph(*subset_sizes) color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)] pos = nx.multipartite_layout(G, subset_key="layer") plt.figure(figsize=(8, 8)) nx.draw(G, pos, node_color=color, with_labels=False) plt.axis("equal") st.pyplot(plt) elif option == "Create your own": # Let the user input the subset sizes and colors st.write("Enter the subset sizes and colors to create your own multipartite graph.") subset_sizes_input = st.text_area("Enter subset sizes (comma-separated, e.g., 5,5,4,3):", value="5,5,4,3,2,4,4,3") subset_sizes = list(map(int, subset_sizes_input.split(','))) subset_colors_input = st.text_area("Enter subset colors (comma-separated, e.g., gold,violet,green):", value="gold,violet,violet,violet,violet,limegreen,limegreen,darkorange") subset_colors = subset_colors_input.split(',') # Check if the number of colors matches the number of subsets if len(subset_sizes) != len(subset_colors): st.error("The number of colors should match the number of subsets.") else: # Add a button to generate the graph if st.button("Generate Graph"): # Generate and plot multipartite graph G = multilayered_graph(*subset_sizes) color = [subset_colors[data["layer"]] for v, data in G.nodes(data=True)] pos = nx.multipartite_layout(G, subset_key="layer") plt.figure(figsize=(8, 8)) nx.draw(G, pos, node_color=color, with_labels=False) plt.axis("equal") st.pyplot(plt) # Display Drawing: Multipartite Layout if selected if sidebar_option == "Drawing: Multipartite Layout": display_multipartite_layout() # Function to display Labels and Colors def display_labels_and_colors(): st.title("Drawing: Labels And Colors") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Create a cubical graph G = nx.cubical_graph() pos = nx.spring_layout(G, seed=3113794652) # positions for all nodes # Draw nodes with different colors options = {"edgecolors": "tab:gray", "node_size": 800, "alpha": 0.9} nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color="tab:red", **options) nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color="tab:blue", **options) # Draw edges nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], width=8, alpha=0.5, edge_color="tab:red", ) nx.draw_networkx_edges( G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], width=8, alpha=0.5, edge_color="tab:blue", ) # Add labels for nodes labels = {0: r"$a$", 1: r"$b$", 2: r"$c$", 3: r"$d$", 4: r"$\alpha$", 5: r"$\beta$", 6: r"$\gamma$", 7: r"$\delta$"} nx.draw_networkx_labels(G, pos, labels, font_size=22, font_color="whitesmoke") plt.tight_layout() plt.axis("off") st.pyplot(plt) elif option == "Create your own": # Let the user input the nodes and edges of the graph st.write("Enter the nodes and edges to create your own labeled graph.") nodes = st.text_area("Enter node labels (comma-separated, e.g., a,b,c,d):", value="a,b,c,d") node_labels = nodes.split(',') edges = st.text_area("Enter edges (format: node1-node2, comma-separated, e.g., a-b,b-c):", value="a-b,b-c,c-d") edge_list = [tuple(edge.split('-')) for edge in edges.split(',')] # Let user choose colors for nodes and edges node_color = st.color_picker("Pick a color for nodes:", "#FF6347") edge_color = st.color_picker("Pick a color for edges:", "#4682B4") # Add a button to generate the graph if st.button("Generate Graph"): # Generate graph based on user input G_custom = nx.Graph() G_custom.add_nodes_from(node_labels) G_custom.add_edges_from(edge_list) # Generate layout for the nodes pos_custom = nx.spring_layout(G_custom) # Draw the graph nx.draw_networkx_nodes(G_custom, pos_custom, node_color=node_color, node_size=800, edgecolors="gray", alpha=0.9) nx.draw_networkx_edges(G_custom, pos_custom, edge_color=edge_color, width=2, alpha=0.7) # Create custom labels custom_labels = {node: f"${node}$" for node in node_labels} nx.draw_networkx_labels(G_custom, pos_custom, labels=custom_labels, font_size=22, font_color="whitesmoke") plt.tight_layout() plt.axis("off") st.pyplot(plt) # Display Drawing: Labels And Colors if selected if sidebar_option == "Drawing: Labels And Colors": display_labels_and_colors() # Function to display Drawing: House With Colors def display_house_with_colors(): st.title("Drawing: House With Colors") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Create the house graph and explicitly set positions G = nx.house_graph() pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)} # Plot nodes with different properties for the "wall" and "roof" nodes nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue") nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange") nx.draw_networkx_edges(G, pos, alpha=0.5, width=6) # Customize axes ax = plt.gca() ax.margins(0.11) plt.tight_layout() plt.axis("off") st.pyplot(plt) elif option == "Create your own": # Allow the user to specify node positions and colors st.write("Specify positions for the house graph nodes.") positions = {} for i in range(5): x = st.number_input(f"X-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) y = st.number_input(f"Y-coordinate for node {i}:", min_value=-10.0, max_value=10.0, value=0.0, step=0.1) positions[i] = (x, y) # Allow the user to specify colors for wall and roof nodes wall_color = st.color_picker("Wall color:", "#0000FF") roof_color = st.color_picker("Roof color:", "#FFA500") if st.button("Generate"): # Create the house graph with the specified positions G_custom = nx.house_graph() # Plot nodes with user-defined properties for wall and roof nodes nx.draw_networkx_nodes(G_custom, positions, node_size=3000, nodelist=[0, 1, 2, 3], node_color=wall_color) nx.draw_networkx_nodes(G_custom, positions, node_size=2000, nodelist=[4], node_color=roof_color) nx.draw_networkx_edges(G_custom, positions, alpha=0.5, width=6) # Customize axes ax = plt.gca() ax.margins(0.11) plt.tight_layout() plt.axis("off") st.pyplot(plt) # Display Drawing: House With Colors if selected if sidebar_option == "Drawing: House With Colors": display_house_with_colors() # Function to display Four Grids visualization for Drawing: Four Grids def display_four_grids(): st.title("Drawing: Four Grids") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Generate a 4x4 grid graph G = nx.grid_2d_graph(4, 4) # 4x4 grid pos = nx.spring_layout(G, iterations=100, seed=39775) # Create a 2x2 subplot fig, all_axes = plt.subplots(2, 2) ax = all_axes.flat # Draw graphs in 4 different styles nx.draw(G, pos, ax=ax[0], font_size=8) nx.draw(G, pos, ax=ax[1], node_size=0, with_labels=False) nx.draw( G, pos, ax=ax[2], node_color="tab:green", edgecolors="tab:gray", # Node surface color edge_color="tab:gray", # Color of graph edges node_size=250, with_labels=False, width=6, ) H = G.to_directed() nx.draw( H, pos, ax=ax[3], node_color="tab:orange", node_size=20, with_labels=False, arrowsize=10, width=2, ) # Set margins for the axes so that nodes aren't clipped for a in ax: a.margins(0.10) fig.tight_layout() st.pyplot(fig) elif option == "Create your own": # Allow the user to customize the grid dimensions rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=4) cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=4) if st.button("Generate"): # Generate a custom grid graph G_custom = nx.grid_2d_graph(rows, cols) # Create the grid graph pos = nx.spring_layout(G_custom, iterations=100, seed=39775) # Create a 2x2 subplot fig, all_axes = plt.subplots(2, 2) ax = all_axes.flat # Draw graphs in 4 different styles nx.draw(G_custom, pos, ax=ax[0], font_size=8) nx.draw(G_custom, pos, ax=ax[1], node_size=0, with_labels=False) nx.draw( G_custom, pos, ax=ax[2], node_color="tab:green", edgecolors="tab:gray", # Node surface color edge_color="tab:gray", # Color of graph edges node_size=250, with_labels=False, width=6, ) H = G_custom.to_directed() nx.draw( H, pos, ax=ax[3], node_color="tab:orange", node_size=20, with_labels=False, arrowsize=10, width=2, ) # Set margins for the axes so that nodes aren't clipped for a in ax: a.margins(0.10) fig.tight_layout() st.pyplot(fig) # Display Drawing: Four Grids if selected if sidebar_option == "Drawing: Four Grids": display_four_grids() # Function to display Eigenvalue analysis for Drawing: Eigenvalues def display_eigenvalue_analysis(): st.title("Drawing: Eigenvalues") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Generate random graph with 1000 nodes and 5000 edges n = 1000 m = 5000 G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility # Calculate the normalized Laplacian matrix L = nx.normalized_laplacian_matrix(G) eigenvalues = np.linalg.eigvals(L.toarray()) # Print largest and smallest eigenvalues st.write(f"Largest eigenvalue: {max(eigenvalues)}") st.write(f"Smallest eigenvalue: {min(eigenvalues)}") # Display the histogram of eigenvalues st.write("### Eigenvalue Histogram") plt.hist(eigenvalues, bins=100) plt.xlim(0, 2) # Eigenvalues between 0 and 2 st.pyplot(plt) elif option == "Create your own": # Allow the user to customize the number of nodes and edges n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) m_edges = st.number_input("Number of edges:", min_value=1, max_value=n_nodes*(n_nodes-1)//2, value=500) if st.button("Generate"): # Generate a random graph with the custom number of nodes and edges G_custom = nx.gnm_random_graph(n_nodes, m_edges, seed=5040) # Seed for reproducibility # Calculate the normalized Laplacian matrix L = nx.normalized_laplacian_matrix(G_custom) eigenvalues = np.linalg.eigvals(L.toarray()) # Print largest and smallest eigenvalues st.write(f"Largest eigenvalue: {max(eigenvalues)}") st.write(f"Smallest eigenvalue: {min(eigenvalues)}") # Display the histogram of eigenvalues st.write("### Eigenvalue Histogram") plt.hist(eigenvalues, bins=100) plt.xlim(0, 2) # Eigenvalues between 0 and 2 st.pyplot(plt) # Display Drawing: Eigenvalues if selected if sidebar_option == "Drawing: Eigenvalues": display_eigenvalue_analysis() # Function to display properties and graph for Basic: Properties def display_graph_properties(G): pathlengths = [] st.write("### Source vertex {target:length, }") for v in G.nodes(): spl = dict(nx.single_source_shortest_path_length(G, v)) st.write(f"Vertex {v}: {spl}") for p in spl: pathlengths.append(spl[p]) avg_path_length = sum(pathlengths) / len(pathlengths) st.write(f"### Average shortest path length: {avg_path_length}") dist = {} for p in pathlengths: dist[p] = dist.get(p, 0) + 1 st.write("### Length #paths") for d in sorted(dist.keys()): st.write(f"Length {d}: {dist[d]} paths") st.write("### Properties") st.write(f"Radius: {nx.radius(G)}") st.write(f"Diameter: {nx.diameter(G)}") st.write(f"Eccentricity: {nx.eccentricity(G)}") st.write(f"Center: {nx.center(G)}") st.write(f"Periphery: {nx.periphery(G)}") st.write(f"Density: {nx.density(G)}") # Visualize the graph st.write("### Graph Visualization") pos = nx.spring_layout(G, seed=3068) # Seed layout for reproducibility draw_graph(G, pos) # Function to display graph for Basic: Read and write graphs def display_read_write_graph(G): st.write("### Adjacency List:") for line in nx.generate_adjlist(G): st.write(line) # Write the graph's edge list to a file st.write("### Writing Edge List to 'grid.edgelist' file:") nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # Save edge list st.write("Edge list written to 'grid.edgelist'") # Read the graph from the edge list st.write("### Reading Edge List from 'grid.edgelist' file:") H = nx.read_edgelist(path="grid.edgelist", delimiter=":") st.write("Edge list read into graph H") # Visualize the graph st.write("### Graph Visualization:") pos = nx.spring_layout(H, seed=200) # Seed for reproducibility draw_graph(H, pos) # Function to display Simple Graphs for Basic: Simple graph def display_simple_graph(G, pos=None): options = { "font_size": 36, "node_size": 3000, "node_color": "white", "edgecolors": "black", "linewidths": 5, "width": 5, } # Draw the network nx.draw_networkx(G, pos, **options) # Set margins for the axes so that nodes aren't clipped ax = plt.gca() ax.margins(0.20) plt.axis("off") st.pyplot(plt) # Function to display Simple Directed Graphs for Basic: Simple graph Directed def display_simple_directed_graph(G, pos=None): options = { "node_size": 500, "node_color": "lightblue", "arrowsize": 20, "width": 2, "edge_color": "gray", } # Draw the directed graph with the given positions and options nx.draw_networkx(G, pos, **options) # Set margins for the axes so that nodes aren't clipped ax = plt.gca() ax.margins(0.20) plt.axis("off") st.pyplot(plt) # Function to display Custom Node Position Graphs for Drawing: Custom Node Position def display_custom_node_position(): st.title("Drawing: Custom Node Position") # Default example graph (path graph with custom node position) G = nx.path_graph(20) center_node = 5 edge_nodes = set(G) - {center_node} # Ensure the nodes around the circle are evenly distributed pos = nx.circular_layout(G.subgraph(edge_nodes)) pos[center_node] = np.array([0, 0]) # Manually specify node position # Draw the graph draw_graph(G, pos) # Function to display Cluster Layout for Drawing: Cluster Layout def display_cluster_layout(): st.title("Drawing: Cluster Layout") G = nx.davis_southern_women_graph() # Example graph communities = nx.community.greedy_modularity_communities(G) # Compute positions for the node clusters as if they were themselves nodes in a supergraph using a larger scale factor supergraph = nx.cycle_graph(len(communities)) superpos = nx.spring_layout(G, scale=50, seed=429) # Use the "supernode" positions as the center of each node cluster centers = list(superpos.values()) pos = {} for center, comm in zip(centers, communities): pos.update(nx.spring_layout(nx.subgraph(G, comm), center=center, seed=1430)) # Nodes colored by cluster for nodes, clr in zip(communities, ("tab:blue", "tab:orange", "tab:green")): nx.draw_networkx_nodes(G, pos=pos, nodelist=nodes, node_color=clr, node_size=100) nx.draw_networkx_edges(G, pos=pos) plt.tight_layout() st.pyplot(plt) # Function to display Degree Analysis for Drawing: Degree Analysis def display_degree_analysis(): st.title("Drawing: Degree Analysis") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.gnp_random_graph(100, 0.02, seed=10374196) degree_sequence = sorted((d for n, d in G.degree()), reverse=True) dmax = max(degree_sequence) fig = plt.figure("Degree of a random graph", figsize=(8, 8)) # Create a gridspec for adding subplots of different sizes axgrid = fig.add_gridspec(5, 4) ax0 = fig.add_subplot(axgrid[0:3, :]) Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0]) pos = nx.spring_layout(Gcc, seed=10396953) nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) ax0.set_title("Connected components of G") ax0.set_axis_off() ax1 = fig.add_subplot(axgrid[3:, :2]) ax1.plot(degree_sequence, "b-", marker="o") ax1.set_title("Degree Rank Plot") ax1.set_ylabel("Degree") ax1.set_xlabel("Rank") ax2 = fig.add_subplot(axgrid[3:, 2:]) ax2.bar(*np.unique(degree_sequence, return_counts=True)) ax2.set_title("Degree histogram") ax2.set_xlabel("Degree") ax2.set_ylabel("# of Nodes") fig.tight_layout() st.pyplot(fig) elif option == "Create your own": n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=500, value=100) p_edge = st.slider("Edge probability:", min_value=0.0, max_value=1.0, value=0.02) if st.button("Generate"): if n_nodes >= 2: G_custom = nx.gnp_random_graph(n_nodes, p_edge, seed=10374196) degree_sequence = sorted((d for n, d in G_custom.degree()), reverse=True) dmax = max(degree_sequence) fig = plt.figure("Degree of a random graph", figsize=(8, 8)) # Create a gridspec for adding subplots of different sizes axgrid = fig.add_gridspec(5, 4) ax0 = fig.add_subplot(axgrid[0:3, :]) Gcc = G_custom.subgraph(sorted(nx.connected_components(G_custom), key=len, reverse=True)[0]) pos = nx.spring_layout(Gcc, seed=10396953) nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) ax0.set_title("Connected components of G") ax0.set_axis_off() ax1 = fig.add_subplot(axgrid[3:, :2]) ax1.plot(degree_sequence, "b-", marker="o") ax1.set_title("Degree Rank Plot") ax1.set_ylabel("Degree") ax1.set_xlabel("Rank") ax2 = fig.add_subplot(axgrid[3:, 2:]) ax2.bar(*np.unique(degree_sequence, return_counts=True)) ax2.set_title("Degree histogram") ax2.set_xlabel("Degree") ax2.set_ylabel("# of Nodes") fig.tight_layout() st.pyplot(fig) # Function to display Ego Graph for Drawing: Ego Graph def display_ego_graph(): st.title("Drawing: Ego Graph") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": # Create a BA model graph - use seed for reproducibility n = 1000 m = 2 seed = 20532 G = nx.barabasi_albert_graph(n, m, seed=seed) # Find node with largest degree node_and_degree = G.degree() (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] # Create ego graph of main hub hub_ego = nx.ego_graph(G, largest_hub) # Draw graph pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) # Draw ego as large and red options = {"node_size": 300, "node_color": "r"} nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) plt.tight_layout() st.pyplot(plt) elif option == "Create your own": n_nodes = st.number_input("Number of nodes:", min_value=2, max_value=1000, value=100) m_edges = st.number_input("Edges per node:", min_value=1, max_value=10, value=2) if st.button("Generate"): if n_nodes >= 2: G_custom = nx.barabasi_albert_graph(n_nodes, m_edges, seed=20532) # Find node with largest degree node_and_degree = G_custom.degree() (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1] # Create ego graph of main hub hub_ego = nx.ego_graph(G_custom, largest_hub) # Draw graph pos = nx.spring_layout(hub_ego, seed=20532) # Seed layout for reproducibility nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False) # Draw ego as large and red options = {"node_size": 300, "node_color": "r"} nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options) plt.tight_layout() st.pyplot(plt) # Display Drawing: Ego Graph if selected if sidebar_option == "Drawing: Ego Graph": display_ego_graph() # Display Basic: Properties if selected elif sidebar_option == "Basic: Properties": st.title("Basic: Properties") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.lollipop_graph(4, 6) display_graph_properties(G) elif option == "Create your own": num_nodes = st.number_input("Number of nodes:", min_value=2, max_value=50, value=5) num_edges = st.number_input("Number of edges per group (for lollipop graph):", min_value=1, max_value=10, value=3) if st.button("Generate"): if num_nodes >= 2 and num_edges >= 1: G_custom = nx.lollipop_graph(num_nodes, num_edges) display_graph_properties(G_custom) # Display Basic: Read and write graphs if selected elif sidebar_option == "Basic: Read and write graphs": st.title("Basic: Read and write graphs") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.grid_2d_graph(5, 5) display_read_write_graph(G) elif option == "Create your own": rows = st.number_input("Number of rows:", min_value=2, max_value=20, value=5) cols = st.number_input("Number of columns:", min_value=2, max_value=20, value=5) if st.button("Generate"): if rows >= 2 and cols >= 2: G_custom = nx.grid_2d_graph(rows, cols) display_read_write_graph(G_custom) # Display Basic: Simple Graph if selected elif sidebar_option == "Basic: Simple graph": st.title("Basic: Simple graph") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.Graph() G.add_edge(1, 2) G.add_edge(1, 3) G.add_edge(1, 5) G.add_edge(2, 3) G.add_edge(3, 4) G.add_edge(4, 5) pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)} display_simple_graph(G, pos) elif option == "Create your own": edges = [] edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") if edge_input: edge_list = edge_input.split("\n") for edge in edge_list: u, v = map(int, edge.split(",")) edges.append((u, v)) if st.button("Generate"): G_custom = nx.Graph() G_custom.add_edges_from(edges) pos = nx.spring_layout(G_custom, seed=42) display_simple_graph(G_custom, pos) # Display Basic: Simple Directed Graph if selected elif sidebar_option == "Basic: Simple graph Directed": st.title("Basic: Simple graph Directed") option = st.radio("Choose a graph type:", ("Default Example", "Create your own")) if option == "Default Example": G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)]) left_nodes = [0, 1, 2] middle_nodes = [3, 4] right_nodes = [5, 6] pos = {n: (0, i) for i, n in enumerate(left_nodes)} pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)}) pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)}) display_simple_directed_graph(G, pos) elif option == "Create your own": edges = [] edge_input = st.text_area("Edges:", value="1,2\n1,3\n2,3") if edge_input: edge_list = edge_input.split("\n") for edge in edge_list: u, v = map(int, edge.split(",")) edges.append((u, v)) if st.button("Generate"): G_custom = nx.DiGraph() G_custom.add_edges_from(edges) pos = nx.spring_layout(G_custom, seed=42) display_simple_directed_graph(G_custom, pos) # Display Drawing: Custom Node Position if selected elif sidebar_option == "Drawing: Custom Node Position": display_custom_node_position() # Display Drawing: Cluster Layout if selected elif sidebar_option == "Drawing: Cluster Layout": display_cluster_layout() # Display Drawing: Degree Analysis if selected elif sidebar_option == "Drawing: Degree Analysis": display_degree_analysis()