File size: 7,593 Bytes
622db0f 8d24f40 622db0f 59ead9f 622db0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import openai #
import base64
from PIL import Image
import io
import fitz # PyMuPDF for PDF handling
# Function to extract text from PDF files
def extract_text_from_pdf(pdf_file):
try:
text = ""
pdf_document = fitz.open(pdf_file)
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text += page.get_text()
pdf_document.close()
return text
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# Function to generate MCQ quiz from PDF content
def generate_mcq_quiz(pdf_content, num_questions, openai_api_key, model_choice):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
limited_content = pdf_content[:8000] if len(pdf_content) > 8000 else pdf_content
prompt = f"""Based on the following document content, generate {num_questions} multiple-choice quiz questions.
For each question:
1. Create a clear question based on key concepts in the document
2. Provide 4 possible answers (A, B, C, D)
3. Indicate the correct answer
4. Briefly explain why the answer is correct
Format the output clearly with each question numbered and separated.
Document content:
{limited_content}
"""
try:
response = openai.ChatCompletion.create(
model=model_choice,
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating quiz: {str(e)}"
# Function to handle image inputs
def generate_image_response(input_text, image, openai_api_key, model_choice):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
try:
response = openai.ChatCompletion.create(
model=model_choice,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": input_text},
{"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{base64_str}"}
}
]
}
],
max_completion_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
return f"Error processing image: {str(e)}"
# Main chatbot function
def chatbot(input_text, image, pdf_file, openai_api_key, model_choice, pdf_content, num_quiz_questions, pdf_quiz_mode, history):
if history is None:
history = []
new_pdf_content = pdf_content
if pdf_file is not None:
new_pdf_content = extract_text_from_pdf(pdf_file)
if pdf_quiz_mode:
if new_pdf_content:
quiz_response = generate_mcq_quiz(new_pdf_content, int(num_quiz_questions), openai_api_key, model_choice)
history.append((f"π€: [PDF Quiz - {num_quiz_questions} questions]", f"π€: {quiz_response}"))
else:
history.append(("π€: [PDF Quiz]", "π€: Please upload a PDF file to generate questions."))
else:
if image is not None:
response = generate_image_response(input_text, image, openai_api_key, model_choice)
if input_text.strip():
history.append((f"π€: {input_text}", f"π€: {response}"))
else:
history.append((f"π€: [Image]", f"π€: {response}"))
return "", None, None, new_pdf_content, history
def clear_history():
return "", None, None, "", []
def update_input_type(choice):
if choice == "Image":
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=False)
)
elif choice == "PDF(QUIZ)":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(value=True)
)
# Custom CSS styling
custom_css = """
.gradio-container {
font-family: 'Arial', sans-serif;
background-color: #f0f4f8;
}
.gradio-header {
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%);
color: white;
padding: 20px;
border-radius: 8px;
text-align: center;
}
.gradio-chatbot {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 6px 18px rgba(0, 0, 0, 0.1);
}
#submit-btn {
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%);
color: white;
border-radius: 8px;
}
#clear-history {
background: linear-gradient(135deg, #e53e3e 0%, #f56565 100%);
color: white;
border-radius: 8px;
}
"""
def create_interface():
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
<div class="gradio-header">
<h1>Multimodal Chatbot (Image + PDF Quiz)</h1>
<h3>Analyze images or generate quizzes from PDFs</h3>
</div>
""")
with gr.Accordion("Instructions", open=False):
gr.Markdown("""
- **Image Chat**: Upload an image and ask questions about it
- **PDF Quiz**: Upload a PDF and generate multiple-choice questions
- Always provide your OpenAI API key
- Choose appropriate model (o1 for images, o3-mini for text)
""")
pdf_content = gr.State("")
with gr.Row():
openai_api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
with gr.Row():
input_type = gr.Radio(["Image", "PDF(QUIZ)"], label="Input Type", value="Image")
with gr.Row():
input_text = gr.Textbox(label="Question (for images)", visible=True)
image_input = gr.Image(label="Upload Image", type="pil", visible=True)
pdf_input = gr.File(label="Upload PDF", visible=False)
quiz_slider = gr.Slider(1, 20, value=5, step=1, label="Number of Questions", visible=False)
quiz_mode = gr.Checkbox(visible=False)
with gr.Row():
model_choice = gr.Dropdown(["o1", "o3-mini"], label="Model", value="o1")
submit_btn = gr.Button("Submit", elem_id="submit-btn")
clear_btn = gr.Button("Clear History", elem_id="clear-history")
chat_history = gr.Chatbot()
input_type.change(
update_input_type,
inputs=[input_type],
outputs=[input_text, image_input, pdf_input, quiz_slider, quiz_mode]
)
submit_btn.click(
chatbot,
inputs=[input_text, image_input, pdf_input, openai_api_key, model_choice, pdf_content, quiz_slider, quiz_mode, chat_history],
outputs=[input_text, image_input, pdf_input, pdf_content, chat_history]
)
clear_btn.click(
clear_history,
outputs=[input_text, image_input, pdf_input, pdf_content, chat_history]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |