File size: 31,052 Bytes
990ba8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
import os
import json
import time
import gradio as gr
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional, Union

# Import Groq - we'll install it in requirements.txt
from groq import Groq

class PersonalAIResearchAssistant:
    """
    Personal AI Research Assistant (PARA) using Groq's compound models with agentic capabilities.
    """
    
    def __init__(self, api_key: str, 
                 knowledge_base_path: str = "knowledge_base.json",
                 model: str = "compound-beta"):
        """
        Initialize the PARA system.
        
        Args:
            api_key: Groq API key
            knowledge_base_path: Path to store persistent knowledge
            model: Which Groq model to use ('compound-beta' or 'compound-beta-mini')
        """
        self.api_key = api_key
        if not self.api_key:
            raise ValueError("No API key provided")
        
        self.client = Groq(api_key=self.api_key)
        self.model = model
        self.knowledge_base_path = Path(knowledge_base_path)
        self.knowledge_base = self._load_knowledge_base()
        
    def _load_knowledge_base(self) -> Dict:
        """Load existing knowledge base or create a new one"""
        if self.knowledge_base_path.exists():
            with open(self.knowledge_base_path, 'r') as f:
                return json.load(f)
        else:
            # Initialize with empty collections
            kb = {
                "topics": {},
                "research_digests": [],
                "code_analyses": [],
                "concept_connections": [],
                "metadata": {
                    "created_at": datetime.now().isoformat(),
                    "last_updated": datetime.now().isoformat()
                }
            }
            self._save_knowledge_base(kb)
            return kb
    
    def _save_knowledge_base(self, kb: Dict = None) -> None:
        """Save the knowledge base to disk"""
        if kb is None:
            kb = self.knowledge_base
            
        # Update metadata
        kb["metadata"]["last_updated"] = datetime.now().isoformat()
        
        with open(self.knowledge_base_path, 'w') as f:
            json.dump(kb, f, indent=2)
    
    def _extract_tool_info(self, response) -> Dict:
        """
        Extract tool usage information in a JSON serializable format
        """
        tool_info = None
        if hasattr(response.choices[0].message, 'executed_tools'):
            # Convert ExecutedTool objects to dictionaries
            tools = response.choices[0].message.executed_tools
            if tools:
                tool_info = []
                for tool in tools:
                    # Extract only serializable data
                    tool_dict = {
                        "tool_type": getattr(tool, "type", "unknown"),
                        "tool_name": getattr(tool, "name", "unknown"),
                    }
                    # Add any other relevant attributes in a serializable form
                    if hasattr(tool, "input"):
                        tool_dict["input"] = str(tool.input)
                    if hasattr(tool, "output"):
                        tool_dict["output"] = str(tool.output)
                    tool_info.append(tool_dict)
        return tool_info
    
    def research_digest(self, topic: str, 
                        include_domains: List[str] = None,
                        exclude_domains: List[str] = None,
                        max_results: int = 5) -> Dict:
        """
        Generate a research digest on a specific topic
        
        Args:
            topic: The research topic to investigate
            include_domains: List of domains to include (e.g., ["arxiv.org", "*.edu"])
            exclude_domains: List of domains to exclude
            max_results: Maximum number of key findings to include
            
        Returns:
            Research digest including key findings and references
        """
        # Build the prompt
        prompt = f"""Generate a research digest on the topic: {topic}
        
        Please find the most recent and relevant information, focusing on:
        1. Key findings or breakthroughs
        2. Current trends and methodologies
        3. Influential researchers or organizations
        4. Practical applications
        
        Structure your response as a concise summary with {max_results} key points maximum.
        Include source information where possible.
        """
        
        # Set up API parameters
        params = {
            "messages": [
                {"role": "system", "content": "You are a research assistant tasked with finding and summarizing the latest information on specific topics."},
                {"role": "user", "content": prompt}
            ],
            "model": self.model
        }
        
        # Add domain filtering if specified
        if include_domains and include_domains[0].strip():
            params["include_domains"] = [domain.strip() for domain in include_domains]
        if exclude_domains and exclude_domains[0].strip():
            params["exclude_domains"] = [domain.strip() for domain in exclude_domains]
            
        # Make the API call
        response = self.client.chat.completions.create(**params)
        content = response.choices[0].message.content
        
        # Extract tool usage information in a serializable format
        tool_info = self._extract_tool_info(response)
        
        # Create digest entry
        digest = {
            "topic": topic,
            "timestamp": datetime.now().isoformat(),
            "content": content,
            "tool_usage": tool_info,
            "parameters": {
                "include_domains": include_domains,
                "exclude_domains": exclude_domains,
            }
        }
        
        # Add to knowledge base
        self.knowledge_base["research_digests"].append(digest)
        
        # Update topic entry in knowledge base
        if topic not in self.knowledge_base["topics"]:
            self.knowledge_base["topics"][topic] = {
                "first_researched": datetime.now().isoformat(),
                "research_count": 1,
                "related_topics": []
            }
        else:
            self.knowledge_base["topics"][topic]["research_count"] += 1
            self.knowledge_base["topics"][topic]["last_researched"] = datetime.now().isoformat()
        
        # Save updated knowledge base
        self._save_knowledge_base()
        
        return digest
    
    def evaluate_code(self, code_snippet: str, language: str = "python", 
                     analysis_type: str = "full") -> Dict:
        """
        Evaluate a code snippet for issues and suggest improvements
        
        Args:
            code_snippet: The code to evaluate
            language: Programming language of the code
            analysis_type: Type of analysis to perform ('full', 'security', 'performance', 'style')
            
        Returns:
            Analysis results including issues and suggestions
        """
        # Build the prompt
        prompt = f"""Analyze the following {language} code:
        
        ```{language}
        {code_snippet}
        ```
        
        Please perform a {analysis_type} analysis, including:
        1. Identifying any bugs or potential issues
        2. Security vulnerabilities (if applicable)
        3. Performance considerations
        4. Style and best practices
        5. Suggested improvements
        
        If possible, execute the code to verify functionality.
        """
        
        # Make the API call
        response = self.client.chat.completions.create(
            messages=[
                {"role": "system", "content": f"You are a code analysis expert specializing in {language}."},
                {"role": "user", "content": prompt}
            ],
            model=self.model
        )
        
        content = response.choices[0].message.content
        
        # Extract tool usage information in a serializable format
        tool_info = self._extract_tool_info(response)
        
        # Create code analysis entry
        analysis = {
            "code_snippet": code_snippet,
            "language": language,
            "analysis_type": analysis_type,
            "timestamp": datetime.now().isoformat(),
            "content": content,
            "tool_usage": tool_info
        }
        
        # Add to knowledge base
        self.knowledge_base["code_analyses"].append(analysis)
        self._save_knowledge_base()
        
        return analysis
    
    def connect_concepts(self, concept_a: str, concept_b: str) -> Dict:
        """
        Identify connections between two seemingly different concepts
        
        Args:
            concept_a: First concept
            concept_b: Second concept
            
        Returns:
            Analysis of connections between the concepts
        """
        # Build the prompt
        prompt = f"""Explore the connections between these two concepts:
        
        Concept A: {concept_a}
        Concept B: {concept_b}
        
        Please identify:
        1. Direct connections or shared principles
        2. Historical influences between them
        3. Common applications or use cases
        4. How insights from one field might benefit the other
        5. Potential for innovative combinations
        
        Search for the most up-to-date information that might connect these concepts.
        """
        
        # Make the API call
        response = self.client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a cross-disciplinary research assistant specialized in finding connections between different fields and concepts."},
                {"role": "user", "content": prompt}
            ],
            model=self.model
        )
        
        content = response.choices[0].message.content
        
        # Extract tool usage information in a serializable format
        tool_info = self._extract_tool_info(response)
        
        # Create connection entry
        connection = {
            "concept_a": concept_a,
            "concept_b": concept_b,
            "timestamp": datetime.now().isoformat(),
            "content": content,
            "tool_usage": tool_info
        }
        
        # Add to knowledge base
        self.knowledge_base["concept_connections"].append(connection)
        
        # Update topic entries
        for concept in [concept_a, concept_b]:
            if concept not in self.knowledge_base["topics"]:
                self.knowledge_base["topics"][concept] = {
                    "first_researched": datetime.now().isoformat(),
                    "research_count": 1,
                    "related_topics": [concept_a if concept == concept_b else concept_b]
                }
            else:
                if concept_a if concept == concept_b else concept_b not in self.knowledge_base["topics"][concept]["related_topics"]:
                    self.knowledge_base["topics"][concept]["related_topics"].append(
                        concept_a if concept == concept_b else concept_b
                    )
        
        self._save_knowledge_base()
        
        return connection
    
    def ask_knowledge_base(self, query: str) -> Dict:
        """
        Query the accumulated knowledge base
        
        Args:
            query: Question about topics in the knowledge base
            
        Returns:
            Response based on accumulated knowledge
        """
        # Create a temporary context from the knowledge base
        context = {
            "topics_researched": list(self.knowledge_base["topics"].keys()),
            "research_count": len(self.knowledge_base["research_digests"]),
            "code_analyses_count": len(self.knowledge_base["code_analyses"]),
            "concept_connections_count": len(self.knowledge_base["concept_connections"]),
            "last_updated": self.knowledge_base["metadata"]["last_updated"]
        }
        
        # Add recent research digests (limited to keep context manageable)
        recent_digests = self.knowledge_base["research_digests"][-3:] if self.knowledge_base["research_digests"] else []
        context["recent_research"] = recent_digests
        
        # Build the prompt
        prompt = f"""Query: {query}
        
        Please answer based on the following knowledge base context:
        {json.dumps(context, indent=2)}
        
        If the knowledge base doesn't contain relevant information, please indicate this and suggest how we might research this topic.
        """
        
        # Make the API call
        response = self.client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a research assistant with access to a personal knowledge base. Answer questions based on the accumulated knowledge."},
                {"role": "user", "content": prompt}
            ],
            model=self.model
        )
        
        content = response.choices[0].message.content
        
        return {
            "query": query,
            "timestamp": datetime.now().isoformat(),
            "response": content,
            "knowledge_base_state": context
        }

    def generate_weekly_report(self) -> Dict:
        """
        Generate a weekly summary of research and insights
        
        Returns:
            Weekly report of activity and key findings
        """
        # Get weekly statistics
        one_week_ago = datetime.now().isoformat()  # Simplified, should subtract 7 days
        
        # Count activities in the last week
        recent_research = [d for d in self.knowledge_base["research_digests"] 
                          if d["timestamp"] > one_week_ago]
        recent_code = [c for c in self.knowledge_base["code_analyses"] 
                      if c["timestamp"] > one_week_ago]
        recent_connections = [c for c in self.knowledge_base["concept_connections"] 
                             if c["timestamp"] > one_week_ago]
        
        # Build context for the report
        context = {
            "period": "weekly",
            "research_count": len(recent_research),
            "code_analyses_count": len(recent_code),
            "concept_connections_count": len(recent_connections),
            "topics_explored": list(set([r["topic"] for r in recent_research])),
            "recent_research": recent_research[:3],  # Include only top 3
            "recent_connections": recent_connections[:3]
        }
        
        # Build the prompt
        prompt = f"""Generate a weekly research summary based on the following activity:
        
        {json.dumps(context, indent=2)}
        
        Please include:
        1. Overview of research activity
        2. Key findings and insights
        3. Emerging patterns or trends
        4. Suggestions for further exploration
        
        Format as a concise weekly report.
        """
        
        # Make the API call
        response = self.client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a research assistant generating a weekly summary of research activities and findings."},
                {"role": "user", "content": prompt}
            ],
            model=self.model
        )
        
        content = response.choices[0].message.content
        
        report = {
            "type": "weekly_report",
            "timestamp": datetime.now().isoformat(),
            "content": content,
            "stats": context
        }
        
        return report
    
    def get_kb_stats(self):
        """Get statistics about the knowledge base"""
        return {
            "topics_count": len(self.knowledge_base["topics"]),
            "research_count": len(self.knowledge_base["research_digests"]),
            "code_analyses_count": len(self.knowledge_base["code_analyses"]),
            "concept_connections_count": len(self.knowledge_base["concept_connections"]),
            "created": self.knowledge_base["metadata"]["created_at"],
            "last_updated": self.knowledge_base["metadata"]["last_updated"],
            "topics": list(self.knowledge_base["topics"].keys())
        }

# Global variables for the Gradio app
para_instance = None
api_key_status = "Not Set"

# Helper functions for Gradio
def validate_api_key(api_key):
    """Validate Groq API key"""
    global para_instance, api_key_status
    
    if not api_key or len(api_key.strip()) < 10:
        return "❌ Please enter a valid API key"
    
    try:
        # Try to initialize with minimal actions
        client = Groq(api_key=api_key)
        # Create PARA instance
        para_instance = PersonalAIResearchAssistant(
            api_key=api_key,
            knowledge_base_path="para_knowledge.json"
        )
        api_key_status = "Valid βœ…"
        
        # Get KB stats
        stats = para_instance.get_kb_stats()
        kb_info = f"**Knowledge Base Stats:**\n\n" \
                 f"- Topics: {stats['topics_count']}\n" \
                 f"- Research Digests: {stats['research_count']}\n" \
                 f"- Code Analyses: {stats['code_analyses_count']}\n" \
                 f"- Concept Connections: {stats['concept_connections_count']}\n" \
                 f"- Last Updated: {stats['last_updated'][:10]}\n\n" \
                 f"**Topics Explored:** {', '.join(stats['topics'][:10])}" + \
                 ("..." if len(stats['topics']) > 10 else "")
        
        return f"βœ… API Key Valid! PARA is ready.\n\n{kb_info}"
    except Exception as e:
        api_key_status = "Invalid ❌"
        para_instance = None
        return f"❌ Error: {str(e)}"

def check_api_key():
    """Check if API key is set"""
    if para_instance is None:
        return "Please set your Groq API key first"
    return None

def update_model_selection(model_choice):
    """Update model selection"""
    global para_instance
    
    if para_instance:
        para_instance.model = model_choice
        return f"Model updated to: {model_choice}"
    else:
        return "Set API key first"

def research_topic(topic, include_domains, exclude_domains):
    """Research a topic with domain filters"""
    # Check if API key is set
    check_result = check_api_key()
    if check_result:
        return check_result
    
    if not topic:
        return "Please enter a topic to research"
    
    # Process domain lists
    include_list = [d.strip() for d in include_domains.split(",")] if include_domains else []
    exclude_list = [d.strip() for d in exclude_domains.split(",")] if exclude_domains else []
    
    try:
        # Perform research
        result = para_instance.research_digest(
            topic=topic,
            include_domains=include_list if include_list and include_list[0] else None,
            exclude_domains=exclude_list if exclude_list and exclude_list[0] else None
        )
        
        # Format response
        response = f"# Research: {topic}\n\n{result['content']}"
        
        # Add tool usage info if available
        if result.get("tool_usage"):
            response += f"\n\n*Tool Usage Information Available*"
            
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def analyze_code(code_snippet, language, analysis_type):
    """Analyze code with Groq"""
    # Check if API key is set
    check_result = check_api_key()
    if check_result:
        return check_result
    
    if not code_snippet:
        return "Please enter code to analyze"
    
    try:
        # Perform analysis
        result = para_instance.evaluate_code(
            code_snippet=code_snippet,
            language=language,
            analysis_type=analysis_type
        )
        
        # Format response
        response = f"# Code Analysis ({language}, {analysis_type})\n\n{result['content']}"
        
        # Add tool usage info if available
        if result.get("tool_usage"):
            response += f"\n\n*Tool Usage Information Available*"
            
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def connect_concepts_handler(concept_a, concept_b):
    """Connect two concepts"""
    # Check if API key is set
    check_result = check_api_key()
    if check_result:
        return check_result
    
    if not concept_a or not concept_b:
        return "Please enter both concepts"
    
    try:
        # Find connections
        result = para_instance.connect_concepts(
            concept_a=concept_a,
            concept_b=concept_b
        )
        
        # Format response
        response = f"# Connection: {concept_a} & {concept_b}\n\n{result['content']}"
        
        # Add tool usage info if available
        if result.get("tool_usage"):
            response += f"\n\n*Tool Usage Information Available*"
            
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def query_knowledge_base(query):
    """Query the knowledge base"""
    # Check if API key is set
    check_result = check_api_key()
    if check_result:
        return check_result
    
    if not query:
        return "Please enter a query"
    
    try:
        # Query knowledge base
        result = para_instance.ask_knowledge_base(query=query)
        
        # Format response
        response = f"# Knowledge Base Query: {query}\n\n{result['response']}"
        
        # Add KB stats
        stats = result.get("knowledge_base_state", {})
        if stats:
            topics = stats.get("topics_researched", [])
            response += f"\n\n*Knowledge Base contains {len(topics)} topics: {', '.join(topics[:5])}" + \
                       ("..." if len(topics) > 5 else "") + "*"
            
        return response
    except Exception as e:
        return f"Error: {str(e)}"

def generate_report_handler():
    """Generate weekly report"""
    # Check if API key is set
    check_result = check_api_key()
    if check_result:
        return check_result
    
    try:
        # Generate report
        result = para_instance.generate_weekly_report()
        
        # Format response
        response = f"# Weekly Research Report\n\n{result['content']}"
        
        return response
    except Exception as e:
        return f"Error: {str(e)}"

# Create the Gradio interface
def create_gradio_app():
    # Define CSS for styling
    css = """
    .title-container {
        text-align: center;
        margin-bottom: 20px;
    }
    .container {
        margin: 0 auto;
        max-width: 1200px;
    }
    .tab-content {
        padding: 20px;
        border-radius: 10px;
        background-color: #f9f9f9;
    }
    """
    
    with gr.Blocks(css=css, title="PARA - Personal AI Research Assistant") as app:
        gr.Markdown(
            """
            <div class="title-container">
            # 🧠 PARA - Personal AI Research Assistant
            *Powered by Groq's Compound Beta models for intelligent research*
            </div>
            """
        )
        
        with gr.Row():
            with gr.Column(scale=4):
                api_key_input = gr.Textbox(
                    label="Groq API Key", 
                    placeholder="Enter your Groq API key here...",
                    type="password"
                )
            with gr.Column(scale=2):
                model_choice = gr.Radio(
                    ["compound-beta", "compound-beta-mini"],
                    label="Model Selection",
                    value="compound-beta"
                )
            with gr.Column(scale=1):
                validate_btn = gr.Button("Validate & Connect")
        
        api_status = gr.Markdown("### Status: Not connected")
        
        # Connect validation button
        validate_btn.click(
            fn=validate_api_key,
            inputs=[api_key_input],
            outputs=[api_status]
        )
        
        # Connect model selection
        model_choice.change(
            fn=update_model_selection,
            inputs=[model_choice],
            outputs=[api_status]
        )
        
        # Tabs for different features
        with gr.Tabs() as tabs:
            # Research Tab
            with gr.Tab("Research Topics"):
                with gr.Row():
                    with gr.Column(scale=1):
                        research_topic_input = gr.Textbox(
                            label="Research Topic",
                            placeholder="Enter a topic to research..."
                        )
                    with gr.Column(scale=1):
                        include_domains = gr.Textbox(
                            label="Include Domains (comma-separated)",
                            placeholder="arxiv.org, *.edu, example.com"
                        )
                        exclude_domains = gr.Textbox(
                            label="Exclude Domains (comma-separated)",
                            placeholder="wikipedia.org, twitter.com"
                        )
                research_btn = gr.Button("Research Topic")
                research_output = gr.Markdown("Results will appear here...")
                
                research_btn.click(
                    fn=research_topic,
                    inputs=[research_topic_input, include_domains, exclude_domains],
                    outputs=[research_output]
                )
                
                gr.Markdown("""
                ### Examples:
                - "Latest developments in quantum computing"
                - "Climate change mitigation strategies"
                - "Advancements in protein folding algorithms"
                
                *Include domains like "arxiv.org, *.edu" for academic sources*
                """)
            
            # Code Analysis Tab
            with gr.Tab("Code Analysis"):
                code_input = gr.Code(
                    label="Code Snippet",
                    language="python",
                    lines=10
                )
                with gr.Row():
                    language_select = gr.Dropdown(
                        ["python", "javascript", "java", "c++", "go", "rust", "typescript", "sql", "bash"],
                        label="Language",
                        value="python"
                    )
                    analysis_type = gr.Dropdown(
                        ["full", "security", "performance", "style"],
                        label="Analysis Type",
                        value="full"
                    )
                analyze_btn = gr.Button("Analyze Code")
                analysis_output = gr.Markdown("Results will appear here...")
                
                analyze_btn.click(
                    fn=analyze_code,
                    inputs=[code_input, language_select, analysis_type],
                    outputs=[analysis_output]
                )
                
                gr.Markdown("""
                ### Example Python Code:
                ```python
                def fibonacci(n):
                    if n <= 0:
                        return []
                    elif n == 1:
                        return [0]
                    else:
                        result = [0, 1]
                        for i in range(2, n):
                            result.append(result[i-1] + result[i-2])
                        return result
                
                print(fibonacci(10))
                ```
                """)
            
            # Concept Connections Tab
            with gr.Tab("Connect Concepts"):
                with gr.Row():
                    concept_a = gr.Textbox(
                        label="Concept A",
                        placeholder="First concept or field..."
                    )
                    concept_b = gr.Textbox(
                        label="Concept B",
                        placeholder="Second concept or field..."
                    )
                connect_btn = gr.Button("Find Connections")
                connection_output = gr.Markdown("Results will appear here...")
                
                connect_btn.click(
                    fn=connect_concepts_handler,
                    inputs=[concept_a, concept_b],
                    outputs=[connection_output]
                )
                
                gr.Markdown("""
                ### Example Concept Pairs:
                - "quantum computing" and "machine learning"
                - "blockchain" and "supply chain management"
                - "gene editing" and "ethics"
                """)
            
            # Knowledge Base Tab
            with gr.Tab("Knowledge Base"):
                kb_query = gr.Textbox(
                    label="Query Knowledge Base",
                    placeholder="Ask about topics in your knowledge base..."
                )
                kb_btn = gr.Button("Query Knowledge Base")
                kb_output = gr.Markdown("Results will appear here...")
                
                kb_btn.click(
                    fn=query_knowledge_base,
                    inputs=[kb_query],
                    outputs=[kb_output]
                )
                
                report_btn = gr.Button("Generate Weekly Report")
                report_output = gr.Markdown("Report will appear here...")
                
                report_btn.click(
                    fn=generate_report_handler,
                    inputs=[],
                    outputs=[report_output]
                )
                
                gr.Markdown("""
                ### Example Queries:
                - "What have we learned about quantum computing?"
                - "Summarize our research on AI safety"
                - "What connections exist between the topics we've studied?"
                """)
        
        gr.Markdown("""
        ## About PARA
        
        PARA (Personal AI Research Assistant) leverages Groq's compound models with agentic capabilities to help you research topics, analyze code, find connections between concepts, and build a personalized knowledge base.
        
        **How it works:**
        1. Set your Groq API key
        2. Choose between compound-beta (more powerful) and compound-beta-mini (faster)
        3. Use the tabs to access different features
        4. Your research is automatically saved to a knowledge base for future reference
        
        **Features:**
        - Web search with domain filtering
        - Code execution and analysis
        - Concept connections discovery
        - Persistent knowledge base
        - Weekly research reports
        """)
    
    return app

# Launch the app
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch()