Spaces:
Sleeping
Sleeping
File size: 31,052 Bytes
990ba8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import os import json import time import gradio as gr from datetime import datetime from pathlib import Path from typing import List, Dict, Any, Optional, Union # Import Groq - we'll install it in requirements.txt from groq import Groq class PersonalAIResearchAssistant: """ Personal AI Research Assistant (PARA) using Groq's compound models with agentic capabilities. """ def __init__(self, api_key: str, knowledge_base_path: str = "knowledge_base.json", model: str = "compound-beta"): """ Initialize the PARA system. Args: api_key: Groq API key knowledge_base_path: Path to store persistent knowledge model: Which Groq model to use ('compound-beta' or 'compound-beta-mini') """ self.api_key = api_key if not self.api_key: raise ValueError("No API key provided") self.client = Groq(api_key=self.api_key) self.model = model self.knowledge_base_path = Path(knowledge_base_path) self.knowledge_base = self._load_knowledge_base() def _load_knowledge_base(self) -> Dict: """Load existing knowledge base or create a new one""" if self.knowledge_base_path.exists(): with open(self.knowledge_base_path, 'r') as f: return json.load(f) else: # Initialize with empty collections kb = { "topics": {}, "research_digests": [], "code_analyses": [], "concept_connections": [], "metadata": { "created_at": datetime.now().isoformat(), "last_updated": datetime.now().isoformat() } } self._save_knowledge_base(kb) return kb def _save_knowledge_base(self, kb: Dict = None) -> None: """Save the knowledge base to disk""" if kb is None: kb = self.knowledge_base # Update metadata kb["metadata"]["last_updated"] = datetime.now().isoformat() with open(self.knowledge_base_path, 'w') as f: json.dump(kb, f, indent=2) def _extract_tool_info(self, response) -> Dict: """ Extract tool usage information in a JSON serializable format """ tool_info = None if hasattr(response.choices[0].message, 'executed_tools'): # Convert ExecutedTool objects to dictionaries tools = response.choices[0].message.executed_tools if tools: tool_info = [] for tool in tools: # Extract only serializable data tool_dict = { "tool_type": getattr(tool, "type", "unknown"), "tool_name": getattr(tool, "name", "unknown"), } # Add any other relevant attributes in a serializable form if hasattr(tool, "input"): tool_dict["input"] = str(tool.input) if hasattr(tool, "output"): tool_dict["output"] = str(tool.output) tool_info.append(tool_dict) return tool_info def research_digest(self, topic: str, include_domains: List[str] = None, exclude_domains: List[str] = None, max_results: int = 5) -> Dict: """ Generate a research digest on a specific topic Args: topic: The research topic to investigate include_domains: List of domains to include (e.g., ["arxiv.org", "*.edu"]) exclude_domains: List of domains to exclude max_results: Maximum number of key findings to include Returns: Research digest including key findings and references """ # Build the prompt prompt = f"""Generate a research digest on the topic: {topic} Please find the most recent and relevant information, focusing on: 1. Key findings or breakthroughs 2. Current trends and methodologies 3. Influential researchers or organizations 4. Practical applications Structure your response as a concise summary with {max_results} key points maximum. Include source information where possible. """ # Set up API parameters params = { "messages": [ {"role": "system", "content": "You are a research assistant tasked with finding and summarizing the latest information on specific topics."}, {"role": "user", "content": prompt} ], "model": self.model } # Add domain filtering if specified if include_domains and include_domains[0].strip(): params["include_domains"] = [domain.strip() for domain in include_domains] if exclude_domains and exclude_domains[0].strip(): params["exclude_domains"] = [domain.strip() for domain in exclude_domains] # Make the API call response = self.client.chat.completions.create(**params) content = response.choices[0].message.content # Extract tool usage information in a serializable format tool_info = self._extract_tool_info(response) # Create digest entry digest = { "topic": topic, "timestamp": datetime.now().isoformat(), "content": content, "tool_usage": tool_info, "parameters": { "include_domains": include_domains, "exclude_domains": exclude_domains, } } # Add to knowledge base self.knowledge_base["research_digests"].append(digest) # Update topic entry in knowledge base if topic not in self.knowledge_base["topics"]: self.knowledge_base["topics"][topic] = { "first_researched": datetime.now().isoformat(), "research_count": 1, "related_topics": [] } else: self.knowledge_base["topics"][topic]["research_count"] += 1 self.knowledge_base["topics"][topic]["last_researched"] = datetime.now().isoformat() # Save updated knowledge base self._save_knowledge_base() return digest def evaluate_code(self, code_snippet: str, language: str = "python", analysis_type: str = "full") -> Dict: """ Evaluate a code snippet for issues and suggest improvements Args: code_snippet: The code to evaluate language: Programming language of the code analysis_type: Type of analysis to perform ('full', 'security', 'performance', 'style') Returns: Analysis results including issues and suggestions """ # Build the prompt prompt = f"""Analyze the following {language} code: ```{language} {code_snippet} ``` Please perform a {analysis_type} analysis, including: 1. Identifying any bugs or potential issues 2. Security vulnerabilities (if applicable) 3. Performance considerations 4. Style and best practices 5. Suggested improvements If possible, execute the code to verify functionality. """ # Make the API call response = self.client.chat.completions.create( messages=[ {"role": "system", "content": f"You are a code analysis expert specializing in {language}."}, {"role": "user", "content": prompt} ], model=self.model ) content = response.choices[0].message.content # Extract tool usage information in a serializable format tool_info = self._extract_tool_info(response) # Create code analysis entry analysis = { "code_snippet": code_snippet, "language": language, "analysis_type": analysis_type, "timestamp": datetime.now().isoformat(), "content": content, "tool_usage": tool_info } # Add to knowledge base self.knowledge_base["code_analyses"].append(analysis) self._save_knowledge_base() return analysis def connect_concepts(self, concept_a: str, concept_b: str) -> Dict: """ Identify connections between two seemingly different concepts Args: concept_a: First concept concept_b: Second concept Returns: Analysis of connections between the concepts """ # Build the prompt prompt = f"""Explore the connections between these two concepts: Concept A: {concept_a} Concept B: {concept_b} Please identify: 1. Direct connections or shared principles 2. Historical influences between them 3. Common applications or use cases 4. How insights from one field might benefit the other 5. Potential for innovative combinations Search for the most up-to-date information that might connect these concepts. """ # Make the API call response = self.client.chat.completions.create( messages=[ {"role": "system", "content": "You are a cross-disciplinary research assistant specialized in finding connections between different fields and concepts."}, {"role": "user", "content": prompt} ], model=self.model ) content = response.choices[0].message.content # Extract tool usage information in a serializable format tool_info = self._extract_tool_info(response) # Create connection entry connection = { "concept_a": concept_a, "concept_b": concept_b, "timestamp": datetime.now().isoformat(), "content": content, "tool_usage": tool_info } # Add to knowledge base self.knowledge_base["concept_connections"].append(connection) # Update topic entries for concept in [concept_a, concept_b]: if concept not in self.knowledge_base["topics"]: self.knowledge_base["topics"][concept] = { "first_researched": datetime.now().isoformat(), "research_count": 1, "related_topics": [concept_a if concept == concept_b else concept_b] } else: if concept_a if concept == concept_b else concept_b not in self.knowledge_base["topics"][concept]["related_topics"]: self.knowledge_base["topics"][concept]["related_topics"].append( concept_a if concept == concept_b else concept_b ) self._save_knowledge_base() return connection def ask_knowledge_base(self, query: str) -> Dict: """ Query the accumulated knowledge base Args: query: Question about topics in the knowledge base Returns: Response based on accumulated knowledge """ # Create a temporary context from the knowledge base context = { "topics_researched": list(self.knowledge_base["topics"].keys()), "research_count": len(self.knowledge_base["research_digests"]), "code_analyses_count": len(self.knowledge_base["code_analyses"]), "concept_connections_count": len(self.knowledge_base["concept_connections"]), "last_updated": self.knowledge_base["metadata"]["last_updated"] } # Add recent research digests (limited to keep context manageable) recent_digests = self.knowledge_base["research_digests"][-3:] if self.knowledge_base["research_digests"] else [] context["recent_research"] = recent_digests # Build the prompt prompt = f"""Query: {query} Please answer based on the following knowledge base context: {json.dumps(context, indent=2)} If the knowledge base doesn't contain relevant information, please indicate this and suggest how we might research this topic. """ # Make the API call response = self.client.chat.completions.create( messages=[ {"role": "system", "content": "You are a research assistant with access to a personal knowledge base. Answer questions based on the accumulated knowledge."}, {"role": "user", "content": prompt} ], model=self.model ) content = response.choices[0].message.content return { "query": query, "timestamp": datetime.now().isoformat(), "response": content, "knowledge_base_state": context } def generate_weekly_report(self) -> Dict: """ Generate a weekly summary of research and insights Returns: Weekly report of activity and key findings """ # Get weekly statistics one_week_ago = datetime.now().isoformat() # Simplified, should subtract 7 days # Count activities in the last week recent_research = [d for d in self.knowledge_base["research_digests"] if d["timestamp"] > one_week_ago] recent_code = [c for c in self.knowledge_base["code_analyses"] if c["timestamp"] > one_week_ago] recent_connections = [c for c in self.knowledge_base["concept_connections"] if c["timestamp"] > one_week_ago] # Build context for the report context = { "period": "weekly", "research_count": len(recent_research), "code_analyses_count": len(recent_code), "concept_connections_count": len(recent_connections), "topics_explored": list(set([r["topic"] for r in recent_research])), "recent_research": recent_research[:3], # Include only top 3 "recent_connections": recent_connections[:3] } # Build the prompt prompt = f"""Generate a weekly research summary based on the following activity: {json.dumps(context, indent=2)} Please include: 1. Overview of research activity 2. Key findings and insights 3. Emerging patterns or trends 4. Suggestions for further exploration Format as a concise weekly report. """ # Make the API call response = self.client.chat.completions.create( messages=[ {"role": "system", "content": "You are a research assistant generating a weekly summary of research activities and findings."}, {"role": "user", "content": prompt} ], model=self.model ) content = response.choices[0].message.content report = { "type": "weekly_report", "timestamp": datetime.now().isoformat(), "content": content, "stats": context } return report def get_kb_stats(self): """Get statistics about the knowledge base""" return { "topics_count": len(self.knowledge_base["topics"]), "research_count": len(self.knowledge_base["research_digests"]), "code_analyses_count": len(self.knowledge_base["code_analyses"]), "concept_connections_count": len(self.knowledge_base["concept_connections"]), "created": self.knowledge_base["metadata"]["created_at"], "last_updated": self.knowledge_base["metadata"]["last_updated"], "topics": list(self.knowledge_base["topics"].keys()) } # Global variables for the Gradio app para_instance = None api_key_status = "Not Set" # Helper functions for Gradio def validate_api_key(api_key): """Validate Groq API key""" global para_instance, api_key_status if not api_key or len(api_key.strip()) < 10: return "β Please enter a valid API key" try: # Try to initialize with minimal actions client = Groq(api_key=api_key) # Create PARA instance para_instance = PersonalAIResearchAssistant( api_key=api_key, knowledge_base_path="para_knowledge.json" ) api_key_status = "Valid β " # Get KB stats stats = para_instance.get_kb_stats() kb_info = f"**Knowledge Base Stats:**\n\n" \ f"- Topics: {stats['topics_count']}\n" \ f"- Research Digests: {stats['research_count']}\n" \ f"- Code Analyses: {stats['code_analyses_count']}\n" \ f"- Concept Connections: {stats['concept_connections_count']}\n" \ f"- Last Updated: {stats['last_updated'][:10]}\n\n" \ f"**Topics Explored:** {', '.join(stats['topics'][:10])}" + \ ("..." if len(stats['topics']) > 10 else "") return f"β API Key Valid! PARA is ready.\n\n{kb_info}" except Exception as e: api_key_status = "Invalid β" para_instance = None return f"β Error: {str(e)}" def check_api_key(): """Check if API key is set""" if para_instance is None: return "Please set your Groq API key first" return None def update_model_selection(model_choice): """Update model selection""" global para_instance if para_instance: para_instance.model = model_choice return f"Model updated to: {model_choice}" else: return "Set API key first" def research_topic(topic, include_domains, exclude_domains): """Research a topic with domain filters""" # Check if API key is set check_result = check_api_key() if check_result: return check_result if not topic: return "Please enter a topic to research" # Process domain lists include_list = [d.strip() for d in include_domains.split(",")] if include_domains else [] exclude_list = [d.strip() for d in exclude_domains.split(",")] if exclude_domains else [] try: # Perform research result = para_instance.research_digest( topic=topic, include_domains=include_list if include_list and include_list[0] else None, exclude_domains=exclude_list if exclude_list and exclude_list[0] else None ) # Format response response = f"# Research: {topic}\n\n{result['content']}" # Add tool usage info if available if result.get("tool_usage"): response += f"\n\n*Tool Usage Information Available*" return response except Exception as e: return f"Error: {str(e)}" def analyze_code(code_snippet, language, analysis_type): """Analyze code with Groq""" # Check if API key is set check_result = check_api_key() if check_result: return check_result if not code_snippet: return "Please enter code to analyze" try: # Perform analysis result = para_instance.evaluate_code( code_snippet=code_snippet, language=language, analysis_type=analysis_type ) # Format response response = f"# Code Analysis ({language}, {analysis_type})\n\n{result['content']}" # Add tool usage info if available if result.get("tool_usage"): response += f"\n\n*Tool Usage Information Available*" return response except Exception as e: return f"Error: {str(e)}" def connect_concepts_handler(concept_a, concept_b): """Connect two concepts""" # Check if API key is set check_result = check_api_key() if check_result: return check_result if not concept_a or not concept_b: return "Please enter both concepts" try: # Find connections result = para_instance.connect_concepts( concept_a=concept_a, concept_b=concept_b ) # Format response response = f"# Connection: {concept_a} & {concept_b}\n\n{result['content']}" # Add tool usage info if available if result.get("tool_usage"): response += f"\n\n*Tool Usage Information Available*" return response except Exception as e: return f"Error: {str(e)}" def query_knowledge_base(query): """Query the knowledge base""" # Check if API key is set check_result = check_api_key() if check_result: return check_result if not query: return "Please enter a query" try: # Query knowledge base result = para_instance.ask_knowledge_base(query=query) # Format response response = f"# Knowledge Base Query: {query}\n\n{result['response']}" # Add KB stats stats = result.get("knowledge_base_state", {}) if stats: topics = stats.get("topics_researched", []) response += f"\n\n*Knowledge Base contains {len(topics)} topics: {', '.join(topics[:5])}" + \ ("..." if len(topics) > 5 else "") + "*" return response except Exception as e: return f"Error: {str(e)}" def generate_report_handler(): """Generate weekly report""" # Check if API key is set check_result = check_api_key() if check_result: return check_result try: # Generate report result = para_instance.generate_weekly_report() # Format response response = f"# Weekly Research Report\n\n{result['content']}" return response except Exception as e: return f"Error: {str(e)}" # Create the Gradio interface def create_gradio_app(): # Define CSS for styling css = """ .title-container { text-align: center; margin-bottom: 20px; } .container { margin: 0 auto; max-width: 1200px; } .tab-content { padding: 20px; border-radius: 10px; background-color: #f9f9f9; } """ with gr.Blocks(css=css, title="PARA - Personal AI Research Assistant") as app: gr.Markdown( """ <div class="title-container"> # π§ PARA - Personal AI Research Assistant *Powered by Groq's Compound Beta models for intelligent research* </div> """ ) with gr.Row(): with gr.Column(scale=4): api_key_input = gr.Textbox( label="Groq API Key", placeholder="Enter your Groq API key here...", type="password" ) with gr.Column(scale=2): model_choice = gr.Radio( ["compound-beta", "compound-beta-mini"], label="Model Selection", value="compound-beta" ) with gr.Column(scale=1): validate_btn = gr.Button("Validate & Connect") api_status = gr.Markdown("### Status: Not connected") # Connect validation button validate_btn.click( fn=validate_api_key, inputs=[api_key_input], outputs=[api_status] ) # Connect model selection model_choice.change( fn=update_model_selection, inputs=[model_choice], outputs=[api_status] ) # Tabs for different features with gr.Tabs() as tabs: # Research Tab with gr.Tab("Research Topics"): with gr.Row(): with gr.Column(scale=1): research_topic_input = gr.Textbox( label="Research Topic", placeholder="Enter a topic to research..." ) with gr.Column(scale=1): include_domains = gr.Textbox( label="Include Domains (comma-separated)", placeholder="arxiv.org, *.edu, example.com" ) exclude_domains = gr.Textbox( label="Exclude Domains (comma-separated)", placeholder="wikipedia.org, twitter.com" ) research_btn = gr.Button("Research Topic") research_output = gr.Markdown("Results will appear here...") research_btn.click( fn=research_topic, inputs=[research_topic_input, include_domains, exclude_domains], outputs=[research_output] ) gr.Markdown(""" ### Examples: - "Latest developments in quantum computing" - "Climate change mitigation strategies" - "Advancements in protein folding algorithms" *Include domains like "arxiv.org, *.edu" for academic sources* """) # Code Analysis Tab with gr.Tab("Code Analysis"): code_input = gr.Code( label="Code Snippet", language="python", lines=10 ) with gr.Row(): language_select = gr.Dropdown( ["python", "javascript", "java", "c++", "go", "rust", "typescript", "sql", "bash"], label="Language", value="python" ) analysis_type = gr.Dropdown( ["full", "security", "performance", "style"], label="Analysis Type", value="full" ) analyze_btn = gr.Button("Analyze Code") analysis_output = gr.Markdown("Results will appear here...") analyze_btn.click( fn=analyze_code, inputs=[code_input, language_select, analysis_type], outputs=[analysis_output] ) gr.Markdown(""" ### Example Python Code: ```python def fibonacci(n): if n <= 0: return [] elif n == 1: return [0] else: result = [0, 1] for i in range(2, n): result.append(result[i-1] + result[i-2]) return result print(fibonacci(10)) ``` """) # Concept Connections Tab with gr.Tab("Connect Concepts"): with gr.Row(): concept_a = gr.Textbox( label="Concept A", placeholder="First concept or field..." ) concept_b = gr.Textbox( label="Concept B", placeholder="Second concept or field..." ) connect_btn = gr.Button("Find Connections") connection_output = gr.Markdown("Results will appear here...") connect_btn.click( fn=connect_concepts_handler, inputs=[concept_a, concept_b], outputs=[connection_output] ) gr.Markdown(""" ### Example Concept Pairs: - "quantum computing" and "machine learning" - "blockchain" and "supply chain management" - "gene editing" and "ethics" """) # Knowledge Base Tab with gr.Tab("Knowledge Base"): kb_query = gr.Textbox( label="Query Knowledge Base", placeholder="Ask about topics in your knowledge base..." ) kb_btn = gr.Button("Query Knowledge Base") kb_output = gr.Markdown("Results will appear here...") kb_btn.click( fn=query_knowledge_base, inputs=[kb_query], outputs=[kb_output] ) report_btn = gr.Button("Generate Weekly Report") report_output = gr.Markdown("Report will appear here...") report_btn.click( fn=generate_report_handler, inputs=[], outputs=[report_output] ) gr.Markdown(""" ### Example Queries: - "What have we learned about quantum computing?" - "Summarize our research on AI safety" - "What connections exist between the topics we've studied?" """) gr.Markdown(""" ## About PARA PARA (Personal AI Research Assistant) leverages Groq's compound models with agentic capabilities to help you research topics, analyze code, find connections between concepts, and build a personalized knowledge base. **How it works:** 1. Set your Groq API key 2. Choose between compound-beta (more powerful) and compound-beta-mini (faster) 3. Use the tabs to access different features 4. Your research is automatically saved to a knowledge base for future reference **Features:** - Web search with domain filtering - Code execution and analysis - Concept connections discovery - Persistent knowledge base - Weekly research reports """) return app # Launch the app if __name__ == "__main__": app = create_gradio_app() app.launch() |