|
import streamlit as st |
|
import fitz |
|
import openai |
|
from fpdf import FPDF |
|
import os |
|
import tempfile |
|
|
|
|
|
def extract_text_from_pdf(pdf_file): |
|
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") |
|
temp_file.write(pdf_file.read()) |
|
temp_file.close() |
|
|
|
|
|
doc = fitz.open(temp_file.name) |
|
text = "" |
|
for page_num in range(len(doc)): |
|
page = doc.load_page(page_num) |
|
text += page.get_text() |
|
|
|
|
|
os.remove(temp_file.name) |
|
|
|
return text |
|
|
|
|
|
def ensure_full_stop(text): |
|
text = text.strip() |
|
if not text.endswith(('.', '!', '?')): |
|
text += '.' |
|
return text |
|
|
|
|
|
def summarize_text(api_key, text): |
|
openai.api_key = api_key |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": f"Summarize the following text:\n\n{text}"}], |
|
max_tokens=500, |
|
temperature=0.5 |
|
) |
|
summary = response.choices[0].message['content'].strip() |
|
return ensure_full_stop(summary) |
|
|
|
|
|
def predict_topic(api_key, text): |
|
openai.api_key = api_key |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": f"What is the main topic of the following text?\n\n{text}"}], |
|
max_tokens=500, |
|
temperature=0.5 |
|
) |
|
topic = response.choices[0].message['content'].strip() |
|
return topic |
|
|
|
|
|
def create_pdf(summary, topic, original_file_name): |
|
base_name = os.path.splitext(original_file_name)[0] |
|
pdf_file_name = f"{base_name} summary.pdf" |
|
|
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", size=12) |
|
|
|
pdf.cell(200, 10, txt="Summary", ln=True, align='C') |
|
pdf.multi_cell(0, 10, txt=summary) |
|
|
|
pdf.cell(200, 10, txt="Predicted Main Topic", ln=True, align='C') |
|
pdf.multi_cell(0, 10, txt=topic) |
|
|
|
|
|
pdf_file_path = f"/tmp/{pdf_file_name}" |
|
pdf.output(pdf_file_path) |
|
|
|
return pdf_file_path |
|
|
|
|
|
st.title("Research Paper Summarizer") |
|
|
|
|
|
api_key = st.text_input("Enter your OpenAI API Key:", type="password") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload your research paper (PDF)", type=["pdf"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
text = extract_text_from_pdf(uploaded_file) |
|
|
|
if len(text) > 1000: |
|
|
|
summary = summarize_text(api_key, text) |
|
|
|
|
|
topic = predict_topic(api_key, text) |
|
|
|
|
|
st.subheader("Summary") |
|
st.write(summary) |
|
|
|
st.subheader("Predicted Main Topic") |
|
st.write(topic) |
|
|
|
|
|
if st.button("Get the Summary PDF"): |
|
pdf_path = create_pdf(summary, topic, uploaded_file.name) |
|
st.download_button( |
|
label="Download Summary PDF", |
|
data=open(pdf_path, "rb").read(), |
|
file_name=os.path.basename(pdf_path), |
|
mime="application/pdf" |
|
) |
|
else: |
|
st.warning("The document is too short for meaningful analysis.") |
|
else: |
|
st.info("Please upload a valid PDF file to proceed.") |
|
|