Spaces:
Sleeping
Sleeping
import gradio as gr | |
from openai import OpenAI | |
import base64 | |
import io | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def solve_stem_problem(api_key, image, subject="math"): | |
# Initialize OpenAI client with user-provided API key | |
try: | |
client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=api_key, | |
) | |
except Exception as e: | |
logger.error(f"Failed to initialize OpenAI client: {str(e)}") | |
return f"Error initializing API client: {str(e)}" | |
# Define detective based on subject | |
detectives = { | |
"math": "Algebra Ace", | |
"physics": "Physics Phantom", | |
"chemistry": "Chemistry Clue-finder", | |
"coding": "Code Cracker" | |
} | |
detective = detectives.get(subject, "Algebra Ace") | |
# Encode the uploaded image to base64 | |
try: | |
# Convert the image to bytes | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format='PNG') | |
img_byte_arr = img_byte_arr.getvalue() | |
# Encode to base64 | |
encoded_image = base64.b64encode(img_byte_arr).decode('utf-8') | |
image_url_data = f"data:image/png;base64,{encoded_image}" | |
except Exception as e: | |
logger.error(f"Image encoding error: {str(e)}") | |
return f"Error encoding image: {str(e)}" | |
# Call the API with error handling | |
try: | |
completion = client.chat.completions.create( | |
extra_headers={ | |
"HTTP-Referer": "https://stem-sleuth.example.com", | |
"X-Title": "STEM Sleuth", | |
}, | |
# Using a more stable model (adjust based on OpenRouter's available models) | |
model="google/gemini-flash-1.5", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": f"Act as {detective} and solve this {subject} problem step-by-step with a detective narrative." | |
}, | |
{ | |
"type": "image_url", | |
"image_url": {"url": image_url_data} | |
} | |
] | |
} | |
] | |
) | |
# Detailed response checking | |
if not completion.choices: | |
logger.warning("API returned no choices") | |
return "API returned no choices. Please check model availability or API key permissions." | |
if not completion.choices[0].message: | |
logger.warning("API returned no message content") | |
return "API returned no message content. Please try again or check the model." | |
solution = completion.choices[0].message.content | |
logger.info("Successfully retrieved solution") | |
return solution | |
except Exception as e: | |
logger.error(f"API call failed: {str(e)}") | |
return f"Error calling API: {str(e)}. Please verify model availability or try again later." | |
# Create Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# STEM Sleuth Problem Solver") | |
gr.Markdown("Upload an image of a STEM problem, select the subject, and provide your API key to get a step-by-step solution.") | |
with gr.Row(): | |
api_key_input = gr.Textbox(label="OpenRouter API Key", type="password", placeholder="Enter your API key") | |
subject_input = gr.Dropdown( | |
choices=["math", "physics", "chemistry", "coding"], | |
label="Subject", | |
value="math" | |
) | |
image_input = gr.Image(type="pil", label="Upload Problem Image") | |
solve_button = gr.Button("Solve Problem") | |
output = gr.Textbox(label="Solution", lines=10) | |
solve_button.click( | |
fn=solve_stem_problem, | |
inputs=[api_key_input, image_input, subject_input], | |
outputs=output | |
) | |
# Launch the app | |
app.launch() |