Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,6 @@ import os
|
|
6 |
import numpy as np
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
-
from reportlab.lib.pagesizes import letter
|
10 |
-
from reportlab.pdfgen import canvas
|
11 |
-
from io import BytesIO
|
12 |
|
13 |
# Function to extract text from a PDF file
|
14 |
def extract_text_from_pdf(pdf_file):
|
@@ -29,29 +26,67 @@ def search_similar(query_embedding, index, stored_texts, top_k=3):
|
|
29 |
results = [(stored_texts[i], distances[0][idx]) for idx, i in enumerate(indices[0])]
|
30 |
return results
|
31 |
|
32 |
-
# Function to
|
33 |
-
def
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Streamlit app starts here
|
57 |
st.title("Course Query Assistant")
|
@@ -112,18 +147,20 @@ if openai_api_key:
|
|
112 |
messages=[{"role": "user", "content": modified_prompt}]
|
113 |
)
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
|
118 |
-
# Display the response
|
119 |
st.write("### Intelligent Reply:")
|
120 |
-
st.write(
|
|
|
|
|
|
|
121 |
|
122 |
-
#
|
123 |
-
pdf_buffer = create_pdf(response_text)
|
124 |
st.download_button(
|
125 |
-
label="Download
|
126 |
-
data=
|
127 |
-
file_name="
|
128 |
-
mime="
|
129 |
)
|
|
|
6 |
import numpy as np
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
9 |
|
10 |
# Function to extract text from a PDF file
|
11 |
def extract_text_from_pdf(pdf_file):
|
|
|
26 |
results = [(stored_texts[i], distances[0][idx]) for idx, i in enumerate(indices[0])]
|
27 |
return results
|
28 |
|
29 |
+
# Function to generate HTML with nice styling
|
30 |
+
def generate_html(response_content):
|
31 |
+
html_template = f"""
|
32 |
+
<!DOCTYPE html>
|
33 |
+
<html lang="en">
|
34 |
+
<head>
|
35 |
+
<meta charset="UTF-8">
|
36 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
37 |
+
<title>Course Query Response</title>
|
38 |
+
<style>
|
39 |
+
body {{
|
40 |
+
font-family: Arial, sans-serif;
|
41 |
+
margin: 0;
|
42 |
+
padding: 0;
|
43 |
+
background-color: #f4f4f9;
|
44 |
+
color: #333;
|
45 |
+
}}
|
46 |
+
.container {{
|
47 |
+
width: 80%;
|
48 |
+
margin: 30px auto;
|
49 |
+
background-color: white;
|
50 |
+
padding: 20px;
|
51 |
+
border-radius: 8px;
|
52 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
53 |
+
}}
|
54 |
+
h1 {{
|
55 |
+
color: #2C3E50;
|
56 |
+
font-size: 2em;
|
57 |
+
text-align: center;
|
58 |
+
}}
|
59 |
+
.response {{
|
60 |
+
background-color: #ecf0f1;
|
61 |
+
border-left: 5px solid #3498db;
|
62 |
+
padding: 20px;
|
63 |
+
font-size: 1.2em;
|
64 |
+
margin-top: 20px;
|
65 |
+
border-radius: 5px;
|
66 |
+
}}
|
67 |
+
footer {{
|
68 |
+
text-align: center;
|
69 |
+
margin-top: 30px;
|
70 |
+
font-size: 0.9em;
|
71 |
+
color: #7f8c8d;
|
72 |
+
}}
|
73 |
+
</style>
|
74 |
+
</head>
|
75 |
+
<body>
|
76 |
+
<div class="container">
|
77 |
+
<h1>Course Query Response</h1>
|
78 |
+
<div class="response">
|
79 |
+
<h3>Answer:</h3>
|
80 |
+
<p>{response_content}</p>
|
81 |
+
</div>
|
82 |
+
<footer>
|
83 |
+
<p>Generated by Course Query Assistant</p>
|
84 |
+
</footer>
|
85 |
+
</div>
|
86 |
+
</body>
|
87 |
+
</html>
|
88 |
+
"""
|
89 |
+
return html_template
|
90 |
|
91 |
# Streamlit app starts here
|
92 |
st.title("Course Query Assistant")
|
|
|
147 |
messages=[{"role": "user", "content": modified_prompt}]
|
148 |
)
|
149 |
|
150 |
+
# Get the response content
|
151 |
+
response_content = response['choices'][0]['message']['content']
|
152 |
|
153 |
+
# Display the response in Streamlit
|
154 |
st.write("### Intelligent Reply:")
|
155 |
+
st.write(response_content)
|
156 |
+
|
157 |
+
# Generate HTML content
|
158 |
+
html_content = generate_html(response_content)
|
159 |
|
160 |
+
# Provide the download button for the HTML file
|
|
|
161 |
st.download_button(
|
162 |
+
label="Download Response as HTML",
|
163 |
+
data=html_content,
|
164 |
+
file_name="course_query_response.html",
|
165 |
+
mime="text/html"
|
166 |
)
|