shukdevdatta123 commited on
Commit
295320f
·
verified ·
1 Parent(s): 6f15feb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -56
app.py CHANGED
@@ -7,20 +7,6 @@ import numpy as np
7
  from sklearn.feature_extraction.text import TfidfVectorizer
8
  from sklearn.metrics.pairwise import cosine_similarity
9
  from io import StringIO
10
- import easyocr
11
-
12
- # Function to extract text from image using EasyOCR
13
- def extract_text_from_image(image):
14
- # Initialize EasyOCR reader
15
- reader = easyocr.Reader(['en']) # Specify language(s); you can add more like ['en', 'fr'] for multiple languages
16
-
17
- # Read text from the image
18
- result = reader.readtext(image)
19
-
20
- # Extract and concatenate the text from the OCR result
21
- text = ' '.join([item[1] for item in result]) # item[1] contains the recognized text
22
-
23
- return text
24
 
25
  # Function to extract text from a PDF file
26
  def extract_text_from_pdf(pdf_file):
@@ -80,16 +66,7 @@ def generate_math_solution(query):
80
  messages=[{"role": "user", "content": prompt}]
81
  )
82
  return response['choices'][0]['message']['content']
83
-
84
- # Function to answer questions based on the image or its content
85
- def answer_question_based_on_image(query, image_text):
86
- prompt = f"The following is text extracted from an image: {image_text}\n\nQuestion: {query}\n\nAnswer the question based on the image text."
87
- response = openai.ChatCompletion.create(
88
- model="gpt-4o-mini", # You can choose another model like GPT-4 Vision, if available
89
- messages=[{"role": "user", "content": prompt}]
90
- )
91
- return response['choices'][0]['message']['content']
92
-
93
  from PIL import Image # Required for local image files
94
 
95
  # Streamlit app starts here
@@ -404,35 +381,3 @@ if openai_api_key:
404
  )
405
  answer = response['choices'][0]['message']['content']
406
  st.write(f"### Answer: {answer}")
407
-
408
- elif mode == "Image Upload":
409
- st.header("Image Upload and Analysis")
410
-
411
- # Image upload feature
412
- uploaded_image = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
413
-
414
- if uploaded_image:
415
- # Open the image with PIL
416
- image = Image.open(uploaded_image)
417
-
418
- # Display the uploaded image
419
- st.image(image, caption="Uploaded Image", use_column_width=True)
420
-
421
- # Extract text from the image using EasyOCR
422
- with st.spinner("Extracting text from the image..."):
423
- image_text = extract_text_from_image(image)
424
-
425
- # Show the extracted text
426
- if image_text:
427
- st.write("### Extracted Text from Image:")
428
- st.write(image_text)
429
- else:
430
- st.write("No text was extracted from the image.")
431
-
432
- # Allow the user to ask questions about the image
433
- question = st.text_input("Ask a question about the image:")
434
-
435
- if question:
436
- with st.spinner("Getting answer..."):
437
- answer = answer_question_based_on_image(question, image_text)
438
- st.write(f"### Answer: {answer}")
 
7
  from sklearn.feature_extraction.text import TfidfVectorizer
8
  from sklearn.metrics.pairwise import cosine_similarity
9
  from io import StringIO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # Function to extract text from a PDF file
12
  def extract_text_from_pdf(pdf_file):
 
66
  messages=[{"role": "user", "content": prompt}]
67
  )
68
  return response['choices'][0]['message']['content']
69
+
 
 
 
 
 
 
 
 
 
70
  from PIL import Image # Required for local image files
71
 
72
  # Streamlit app starts here
 
381
  )
382
  answer = response['choices'][0]['message']['content']
383
  st.write(f"### Answer: {answer}")