## import streamlit as st import PyPDF2 import openai import faiss import os import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Function to extract text from a PDF file def extract_text_from_pdf(pdf_file): reader = PyPDF2.PdfReader(pdf_file) text = "" for page in reader.pages: text += page.extract_text() return text # Function to generate embeddings for a piece of text def get_embeddings(text, model="text-embedding-ada-002"): response = openai.Embedding.create(input=[text], model=model) return response['data'][0]['embedding'] # Function to search for similar content def search_similar(query_embedding, index, stored_texts, top_k=3): distances, indices = index.search(np.array([query_embedding]), top_k) results = [(stored_texts[i], distances[0][idx]) for idx, i in enumerate(indices[0])] return results # Streamlit app starts here st.title("Course Query Assistant") # Input OpenAI API key openai_api_key = st.text_input("Enter your OpenAI API key:", type="password") if openai_api_key: openai.api_key = openai_api_key # Upload course materials uploaded_files = st.file_uploader("Upload Course Materials (PDFs)", type=["pdf"], accept_multiple_files=True) if uploaded_files: st.write("Processing uploaded course materials...") # Extract text and generate embeddings for all uploaded PDFs course_texts = [] for uploaded_file in uploaded_files: text = extract_text_from_pdf(uploaded_file) course_texts.append(text) # Combine all course materials into one large text combined_text = " ".join(course_texts) # Split combined text into smaller chunks for embedding (max tokens ~1000) chunks = [combined_text[i:i+1000] for i in range(0, len(combined_text), 1000)] # Generate embeddings for all chunks embeddings = [get_embeddings(chunk) for chunk in chunks] # Convert the list of embeddings into a NumPy array (shape: [num_chunks, embedding_size]) embeddings_np = np.array(embeddings).astype("float32") # Create a FAISS index for similarity search index = faiss.IndexFlatL2(len(embeddings_np[0])) # Use the length of the embedding vectors for the dimension index.add(embeddings_np) st.write("Course materials have been processed and indexed.") # User query query = st.text_input("Enter your question about the course materials:") if query: # Generate embedding for the query query_embedding = get_embeddings(query) # Search for similar chunks in the FAISS index results = search_similar(query_embedding, index, chunks) # Create the context for the GPT prompt context = "\n".join([result[0] for result in results]) modified_prompt = f"Context: {context}\n\nQuestion: {query}\n\nProvide a detailed answer based on the context." # Get the GPT-3.5-turbo response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": modified_prompt}] ) # Display the response st.write("### Intelligent Reply:") st.write(response['choices'][0]['message']['content'])