# import streamlit as st import PyPDF2 import openai import faiss import os import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from io import StringIO from PIL import Image import base64 from io import BytesIO # Function to convert image to base64 def image_to_base64(image): buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") # Function to extract text from a PDF file def extract_text_from_pdf(pdf_file): reader = PyPDF2.PdfReader(pdf_file) text = "" for page in reader.pages: text += page.extract_text() return text # Function to generate embeddings for a piece of text def get_embeddings(text, model="text-embedding-ada-002"): response = openai.Embedding.create(input=[text], model=model) return response['data'][0]['embedding'] # Function to search for similar content def search_similar(query_embedding, index, stored_texts, top_k=3): distances, indices = index.search(np.array([query_embedding]), top_k) results = [(stored_texts[i], distances[0][idx]) for idx, i in enumerate(indices[0])] return results # Function to generate code based on a prompt def generate_code_from_prompt(prompt, model="gpt-4o-mini"): response = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": prompt}] ) return response['choices'][0]['message']['content'] # Function to save code to a .txt file def save_code_to_file(code, filename="generated_code.txt"): with open(filename, "w") as f: f.write(code) # Function to generate AI-based study notes and summaries def generate_summary(text): prompt = f"Summarize the following text into key points:\n\n{text}" response = openai.ChatCompletion.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}] ) return response['choices'][0]['message']['content'] # Function to fix bugs in code def fix_code_bugs(buggy_code, model="gpt-4o-mini"): prompt = f"The following code has bugs or issues. Please identify and fix the problems. If possible, provide explanations for the changes made.\n\nBuggy Code:\n{buggy_code}\n\nFixed Code:" response = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": prompt}] ) return response['choices'][0]['message']['content'] # Function to generate AI-based mathematical solutions def generate_math_solution(query): prompt = f"Explain and solve the following mathematical problem step by step: {query}" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}] ) return response['choices'][0]['message']['content'] # Streamlit app starts here st.set_page_config(page_title="AI Assistance", page_icon=":robot:", layout="wide") # Custom CSS for the page styling st.markdown(""" """, unsafe_allow_html=True) # Custom JavaScript for animations st.markdown(""" """, unsafe_allow_html=True) # Display the app header st.markdown("

Smart AI Tutor Assistance

", unsafe_allow_html=True) # Load the image image = Image.open("14313824.png") # Center-align the image using custom HTML st.markdown( """
""".format(image_to_base64(image)), unsafe_allow_html=True ) # Input OpenAI API key openai_api_key = st.text_input("Enter your OpenAI API key:", type="password") if openai_api_key: openai.api_key = openai_api_key # Sidebar to toggle between Course Query Assistant, Code Generator, Bug Fixer, etc. st.sidebar.title("Select Mode") mode = st.sidebar.radio("Choose an option", ( "Course Query Assistant", "Code Generator", "AI Chatbot Tutor", "AI Study Notes & Summaries", "Code Bug Fixer", "Mathematics Assistant", # Added option for Math "Biology Assistant", # Added option for Biology "Chemistry Assistant", # Added option for Chemistry "Physics Assistant", # Added option for Physics "Voice Chat", "Image Chat", "English To Japanese", "Text to Image Generator", "Graph Tutorial", "Text-To-Diagram-Generator", "Multi Modal Omni Chatbot", "GPT-4.5 Preview Chatbot" )) # Add Contact information in the sidebar st.sidebar.markdown(""" ## Contact For any questions or issues, please contact: - **Email**: [shukdevdatta@gmail.com](mailto:shukdevdatta@gmail.com) - **GitHub**: [Click here to access the Github Profile](https://github.com/shukdevtroy) - **WhatsApp**: [Click here to chat](https://wa.me/+8801719296601) - **HuggingFace Profile**: [Click here to access the HuggingFace Profile](https://huggingface.co/shukdevdatta123) """) if mode == "Course Query Assistant": st.header("Course Query Assistant") # Display image/logo in the "Course Query Assistant" section (optional) course_query_image = Image.open("Capture.PNG") # Ensure the file is in the correct directory st.image(course_query_image, width=150) # Adjust the size as per preference # Upload course materials uploaded_files = st.file_uploader("Upload Course Materials (PDFs)", type=["pdf"], accept_multiple_files=True) if uploaded_files: st.write("Processing uploaded course materials...") # Extract text and generate embeddings for all uploaded PDFs course_texts = [] for uploaded_file in uploaded_files: text = extract_text_from_pdf(uploaded_file) course_texts.append(text) # Combine all course materials into one large text combined_text = " ".join(course_texts) # Split combined text into smaller chunks for embedding (max tokens ~1000) chunks = [combined_text[i:i+1000] for i in range(0, len(combined_text), 1000)] # Generate embeddings for all chunks embeddings = [get_embeddings(chunk) for chunk in chunks] # Convert the list of embeddings into a NumPy array (shape: [num_chunks, embedding_size]) embeddings_np = np.array(embeddings).astype("float32") # Create a FAISS index for similarity search index = faiss.IndexFlatL2(len(embeddings_np[0])) # Use the length of the embedding vectors for the dimension index.add(embeddings_np) st.write("Course materials have been processed and indexed.") # User query query = st.text_input("Enter your question about the course materials:") if query: # Generate embedding for the query query_embedding = get_embeddings(query) # Search for similar chunks in the FAISS index results = search_similar(query_embedding, index, chunks) # Create the context for the GPT prompt context = "\n".join([result[0] for result in results]) modified_prompt = f"Context: {context}\n\nQuestion: {query}\n\nProvide a detailed answer based on the context." # Get the GPT-4 response response = openai.ChatCompletion.create( model="gpt-4o-mini", # Update to GPT-4 (or your desired model) messages=[{"role": "user", "content": modified_prompt}] ) # Get the response content response_content = response['choices'][0]['message']['content'] # Display the response in Streamlit (Intelligent Reply) st.write("### Intelligent Reply:") st.write(response_content) elif mode == "Code Generator": st.header("Code Generator") # Display image/logo in the "Course Query Assistant" section (optional) codegen = Image.open("9802381.png") # Ensure the file is in the correct directory st.image(codegen, width=150) # Adjust the size as per preference # Code generation prompt input code_prompt = st.text_area("Describe the code you want to generate:", "e.g., Write a Python program that generates Fibonacci numbers.") if st.button("Generate Code"): if code_prompt: with st.spinner("Generating code..."): # Generate code using GPT-4 generated_code = generate_code_from_prompt(code_prompt) # Clean the generated code to ensure only code is saved (removing comments or additional text) clean_code = "\n".join([line for line in generated_code.splitlines() if not line.strip().startswith("#")]) # Save the clean code to a file save_code_to_file(clean_code) # Display the generated code st.write("### Generated Code:") st.code(clean_code, language="python") # Provide a download link for the generated code with open("generated_code.txt", "w") as f: f.write(clean_code) st.download_button( label="Download Generated Code", data=open("generated_code.txt", "rb").read(), file_name="generated_code.txt", mime="text/plain" ) else: st.error("Please provide a prompt to generate the code.") elif mode == "AI Chatbot Tutor": st.header("AI Chatbot Tutor") # Display image/logo in the "Course Query Assistant" section (optional) aitut = Image.open("910372.png") # Ensure the file is in the correct directory st.image(aitut, width=150) # Adjust the size as per preference # Chat interface for the AI tutor chat_history = [] def chat_with_bot(query): chat_history.append({"role": "user", "content": query}) response = openai.ChatCompletion.create( model="gpt-4o-mini", messages=chat_history ) chat_history.append({"role": "assistant", "content": response['choices'][0]['message']['content']}) return response['choices'][0]['message']['content'] user_query = st.text_input("Ask a question:") if user_query: with st.spinner("Getting answer..."): bot_response = chat_with_bot(user_query) st.write(f"### AI Response: {bot_response}") elif mode == "AI Study Notes & Summaries": st.header("AI Study Notes & Summaries") # Display image/logo in the "Course Query Assistant" section (optional) aisum = Image.open("sum.png") # Ensure the file is in the correct directory st.image(aisum, width=150) # Adjust the size as per preference # Upload course materials for summarization uploaded_files_for_summary = st.file_uploader("Upload Course Materials (PDFs) for Summarization", type=["pdf"], accept_multiple_files=True) if uploaded_files_for_summary: st.write("Generating study notes and summaries...") # Extract text from PDFs all_text = "" for uploaded_file in uploaded_files_for_summary: text = extract_text_from_pdf(uploaded_file) all_text += text # Generate summary using AI summary = generate_summary(all_text) # Display the summary st.write("### AI-Generated Summary:") st.write(summary) elif mode == "Code Bug Fixer": st.header("Code Bug Fixer") # Display image/logo in the "Course Query Assistant" section (optional) aibug = Image.open("bug.png") # Ensure the file is in the correct directory st.image(aibug, width=150) # Adjust the size as per preference # User input for buggy code buggy_code = st.text_area("Enter your buggy code here:") if st.button("Fix Code"): if buggy_code: with st.spinner("Fixing code..."): # Fix bugs using GPT-4 fixed_code = fix_code_bugs(buggy_code) # Display the fixed code st.write("### Fixed Code:") st.code(fixed_code, language="python") # Provide a download link for the fixed code with open("fixed_code.txt", "w") as f: f.write(fixed_code) st.download_button( label="Download Fixed Code", data=open("fixed_code.txt", "rb").read(), file_name="fixed_code.txt", mime="text/plain" ) else: st.error("Please enter some buggy code to fix.") elif mode == "Mathematics Assistant": st.header("Mathematics Assistant") # Display image/logo in the "Mathematics Assistant" section (optional) math_icon = Image.open("math_icon.PNG") # Ensure the file is in the correct directory st.image(math_icon, width=150) # Adjust the size as per preference # User input for math questions math_query = st.text_input("Ask a mathematics-related question:") if st.button("Solve Problem"): if math_query: with st.spinner("Generating solution..."): # Generate the solution using GPT-4 solution = generate_math_solution(math_query) # Render the solution with LaTeX for mathematical notations formatted_solution = f""" ### Solution to the Problem **Problem:** {math_query} **Solution:** {solution} """ st.markdown(formatted_solution) else: st.error("Please enter a math problem to solve.") # **New Section: Biology Assistant** elif mode == "Biology Assistant": st.header("Biology Assistant") # Display image/logo in the "Biology Assistant" section (optional) bio_icon = Image.open("bio_icon.PNG") # Ensure the file is in the correct directory st.image(bio_icon, width=150) # Adjust the size as per preference # User input for biology questions bio_query = st.text_input("Ask a biology-related question:") if bio_query: with st.spinner("Getting answer..."): prompt = f"Answer the following biology question: {bio_query}" response = openai.ChatCompletion.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}] ) answer = response['choices'][0]['message']['content'] st.write(f"### Answer: {answer}") # **New Section: Chemistry Assistant** elif mode == "Chemistry Assistant": st.header("Chemistry Assistant") # Display image/logo in the "Chemistry Assistant" section (optional) chem_icon = Image.open("chem.PNG") # Ensure the file is in the correct directory st.image(chem_icon, width=150) # Adjust the size as per preference # User input for chemistry questions chem_query = st.text_input("Ask a chemistry-related question:") if chem_query: with st.spinner("Getting answer..."): prompt = f"Answer the following chemistry question: {chem_query}" response = openai.ChatCompletion.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}] ) answer = response['choices'][0]['message']['content'] st.write(f"### Answer: {answer}") # **New Section: Physics Assistant** elif mode == "Physics Assistant": st.header("Physics Assistant") # Display image/logo in the "Physics Assistant" section (optional) phys_icon = Image.open("physics_icon.PNG") # Ensure the file is in the correct directory st.image(phys_icon, width=150) # Adjust the size as per preference # User input for physics questions phys_query = st.text_input("Ask a physics-related question:") if phys_query: with st.spinner("Getting answer..."): prompt = f"Answer the following physics question: {phys_query}" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}] ) answer = response['choices'][0]['message']['content'] st.write(f"### Answer: {answer}") # **New Section: Voice Chat** elif mode == "Voice Chat": st.header("Voice Chat") # Display a description or instructions st.write("Click the button below to go to the Voice Chat.") # Display image/logo in the "Physics Assistant" section (optional) gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=50) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Voice Chat"): st.write("Redirecting to the voice chat...") # You can customize this message st.markdown(f'Go to Voice Chat', unsafe_allow_html=True) # **New Section: Image Chat** elif mode == "Image Chat": st.header("Image Chat") # Display image/logo in the "Physics Assistant" section (optional) imgc = Image.open("i.jpg") # Ensure the file is in the correct directory st.image(imgc, width=150) # Adjust the size as per preference # Display a description or instructions st.write("Click the button below to go to the Image Chat.") # Display image/logo in the "Physics Assistant" section (optional) gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=50) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Image Chat"): st.write("Redirecting to the image chat...") # You can customize this message st.markdown(f'Go to Image Chat', unsafe_allow_html=True) # Button to navigate to the alternative app (alternative) if st.button("Go to Image Chat (Alternative App)"): st.write("Redirecting to the alternative image chat...") # You can customize this message st.markdown(f'Go to Image Chat (Alternative App)', unsafe_allow_html=True) # **New Section: English To Japanese** elif mode == "English To Japanese": st.header("English To Japanese") # Display a description or instructions st.write("Click the button below to go to the English To Japanese Translator.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to English To Japanese Translator"): st.write("Redirecting to the English To Japanese Translator...") # You can customize this message st.markdown(f'Go to English To Japanese Translator', unsafe_allow_html=True) # **New Section: Text to Image Generator** elif mode == "Text to Image Generator": st.header("Text to Image Generator") # Display a description or instructions st.write("Click the button below to go to the Text to Image Generator.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Text to Image Generator"): st.write("Redirecting to the Text to Image Generator...") # You can customize this message st.markdown(f'Go to Text to Image Generator', unsafe_allow_html=True) # **New Section: Graph Tutorial** elif mode == "Graph Tutorial": st.header("Graph Tutorial") # Display a description or instructions st.write("Click the button below to go to Graph Tutorial.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Graph Tutorial"): st.write("Redirecting to Graph Tutorial...") # You can customize this message st.markdown(f'Go to Graph Tutorial', unsafe_allow_html=True) # **New Section: Text-To-Diagram-Generator** elif mode == "Text-To-Diagram-Generator": st.header("Text-To-Diagram-Generator") # Display a description or instructions st.write("Click the button below to go to Text-To-Diagram-Generator.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Text-To-Diagram-Generator"): st.write("Redirecting to Text-To-Diagram-Generator...") # You can customize this message st.markdown(f'Go to Text-To-Diagram-Generator', unsafe_allow_html=True) # **New Section: Text-To-Diagram-Generator** elif mode == "Multi Modal Omni Chatbot": st.header("Multi Modal Omni Chatbot") # Display a description or instructions st.write("Click the button below to go to Multi Modal Omni Chatbot.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to Multi Modal Omni Chatbot"): st.write("Redirecting to Multi Modal Omni Chatbot...") # You can customize this message st.markdown(f'Go to Multi Modal Omni Chatbot', unsafe_allow_html=True) # **New Section: Text-To-Diagram-Generator** elif mode == "GPT-4.5 Preview Chatbot": st.header("GPT-4.5 Preview Chatbot") # Display a description or instructions st.write("Click the button below to go to Multi Modal Omni Chatbot.") gif = "200w.gif" # Ensure the file is in the correct directory st.image(gif, use_container_width=150) # Adjust the size as per preference # Button to navigate to the external voice chat link if st.button("Go to GPT-4.5 Preview Chatbot"): st.write("Redirecting to GPT-4.5 Preview Chatbot...") # You can customize this message st.markdown(f'Go to GPT-4.5 Preview Chatbot', unsafe_allow_html=True)