File size: 14,833 Bytes
86675d2 4f206b9 1369577 4f206b9 6a66e6f 1369577 4f206b9 1369577 4f206b9 1369577 4f206b9 1369577 4f206b9 7b791f9 45561c6 7b791f9 1369577 4f206b9 e6f8836 8ec6adc 4f206b9 bc8a428 7b791f9 4f206b9 3ce2003 4f206b9 bc8a428 7b791f9 bc8a428 4f206b9 3ce2003 4f206b9 bc8a428 7b791f9 4f206b9 3ce2003 4f206b9 bc8a428 7b791f9 bc8a428 4f206b9 3ce2003 4f206b9 bc8a428 4f206b9 7b791f9 4f206b9 3ce2003 4f206b9 bc8a428 7b791f9 bc8a428 4f206b9 3ce2003 4f206b9 bc8a428 4f206b9 7b791f9 4f206b9 3ce2003 4f206b9 bc8a428 7b791f9 bc8a428 4f206b9 3ce2003 4f206b9 1369577 4f206b9 3ce2003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gradio as gr
import os
from openai import OpenAI
import requests
from PIL import Image
import io
import tempfile
import base64
def analyze_environmental_impact(api_key, analysis_type, image=None, text_input=None, location=None, product_info=None):
"""
Analyze environmental impact based on user inputs using Gemini 2.5 Pro through OpenRouter.
"""
if not api_key:
return "Please provide an OpenRouter API key."
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
# Prepare messages based on analysis type
if analysis_type == "Image Analysis":
if image is None:
return "Please upload an image for analysis."
# Save image to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
image_path = temp_file.name
image.save(image_path)
# Convert image to base64
with open(image_path, "rb") as img_file:
image_base64 = base64.b64encode(img_file.read()).decode("utf-8")
# Clean up temp file
os.unlink(image_path)
prompt = """
Analyze this image for environmental impact factors. Consider:
1. Visible ecosystems, wildlife, or natural resources
2. Human infrastructure and its potential environmental footprint
3. Evidence of pollution, waste, or environmental degradation
4. Sustainable or eco-friendly elements
Provide a comprehensive environmental impact assessment and suggest ways to improve
sustainability based on what you see.
"""
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
]
elif analysis_type == "Geographical Assessment":
if not location:
return "Please provide a location for geographical assessment."
prompt = f"""
Provide an environmental impact assessment for the location: {location}.
Include information about:
1. Current environmental conditions (air quality, water resources, biodiversity)
2. Major environmental challenges and threats
3. Sustainability initiatives and progress
4. Carbon footprint and emissions data
5. Recommendations for improving environmental sustainability in this area
Present the information in a structured format with clear sections for each aspect.
"""
messages = [
{
"role": "user",
"content": prompt
}
]
elif analysis_type == "Product Assessment":
if not product_info:
return "Please provide product information for assessment."
prompt = f"""
Analyze the environmental impact of the following product:
{product_info}
Include in your assessment:
1. Materials and resources used
2. Manufacturing process impact
3. Transportation and distribution footprint
4. Usage phase environmental impact
5. End-of-life considerations
6. Overall sustainability score on a scale of 1-10
7. Recommendations for improving the product's environmental footprint
Be specific and provide actionable insights.
"""
messages = [
{
"role": "user",
"content": prompt
}
]
elif analysis_type == "Custom Query":
if not text_input:
return "Please provide a query for custom environmental analysis."
prompt = f"""
Provide an environmental impact analysis based on the following information:
{text_input}
Include in your response:
1. Key environmental concerns identified
2. Potential ecological impacts - short and long term
3. Carbon footprint considerations
4. Waste and pollution factors
5. Biodiversity impacts
6. Actionable recommendations for sustainability
7. References to relevant environmental principles or frameworks
Be specific, thorough, and provide practical advice.
"""
messages = [
{
"role": "user",
"content": prompt
}
]
# Make API call
try:
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://environmental-impact-analyzer.app",
"X-Title": "Smart Environmental Impact Analyzer",
},
model="google/gemini-2.5-pro-exp-03-25:free",
messages=messages
)
# Check if completion and choices exist before accessing
if completion and hasattr(completion, 'choices') and completion.choices and len(completion.choices) > 0:
if hasattr(completion.choices[0], 'message') and completion.choices[0].message:
return completion.choices[0].message.content
else:
return "Error: Received empty message from API."
else:
return "Error: Received incomplete response from API."
except Exception as e:
return f"Error during analysis: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Smart Environmental Impact Analyzer") as app:
gr.Markdown("# 🌍 Smart Environmental Impact Analyzer")
gr.Markdown("""
This tool analyzes environmental impacts using Gemini 2.5 Pro AI.
Choose an analysis type and provide the required information.
""")
with gr.Accordion("Sample Example Inputs", open=False):
gr.Markdown("""
### API Key Input:
First, you'll need an OpenRouter API key. If you don't have one, you can get it from [openrouter.ai](https://openrouter.ai). This should be entered in the "OpenRouter API Key" field.
Sample API key format (not a real key):
```
sk-or-v1-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
```
### Image Analysis Tab:
Upload an image like:
- A cityscape with visible pollution
- A forest or natural area
- An industrial facility
- A solar farm or wind turbines
- A beach with visible plastic waste
For testing purposes, you could use public domain environmental images from sites like [Unsplash](https://unsplash.com) or [Pexels](https://www.pexels.com).
### Geographical Assessment Tab:
Sample location inputs:
- **New York City, USA**
- **Copenhagen, Denmark**
- **Amazon Rainforest, Brazil**
- **Great Barrier Reef, Australia**
### Product Assessment Tab:
Sample product descriptions:
1. **Plastic water bottle** made from PET plastic. Single-use design with a plastic cap. Manufactured in China and shipped globally. Typical lifecycle includes production, distribution, single use, and disposal, with most bottles ending up in landfills or as litter.
2. **Electric car** with a 75kWh lithium-ion battery. Aluminum and steel body with leather interior. Manufactured in California, USA. Average lifespan of 15 years or 200,000 miles. Battery requires rare earth minerals from mining operations.
3. **Organic cotton t-shirt**, grown without pesticides or synthetic fertilizers. Made in India using natural dyes. Packaged in recycled paper. Designed to last approximately 50 washes.
### Custom Query Tab:
Sample queries:
1. What is the environmental impact of bitcoin mining and cryptocurrency operations? How does it compare to traditional banking systems?
2. How would switching to a plant-based diet for one year affect my personal carbon footprint? What specific food choices would have the biggest positive impact?
3. What are the environmental trade-offs between paper packaging and plastic packaging for food products? When is each option more sustainable?
4. How does fast fashion impact water resources? What sustainable alternatives exist?
""")
with gr.Accordion("About the project!", open=False):
gr.Markdown("""
### Image Analysis:
Users can upload an image to analyze environmental impacts, such as:
- Pollution
- Ecosystems
- Human infrastructure
### Geographical Assessment:
This section allows users to input a location and receive an analysis of:
- Environmental conditions
- Challenges
- Sustainability efforts
### Product Assessment:
Users can input product details to analyze the environmental impact throughout the product’s lifecycle, including:
- Materials used
- Manufacturing process
- Disposal
### Custom Query:
This section allows users to input any custom environmental query to receive a detailed analysis, covering:
- Carbon footprint
- Waste and pollution
- Sustainability practices
""")
api_key = gr.Textbox(label="OpenRouter API Key", placeholder="Enter your OpenRouter API key", type="password")
with gr.Tabs():
with gr.TabItem("Image Analysis"):
image_input = gr.Image(type="pil", label="Upload an image for environmental analysis")
image_submit = gr.Button("Analyze Image")
image_output = gr.Textbox(label="Analysis Results", lines=15)
image_clear = gr.Button("Clear Response")
image_submit.click(
analyze_environmental_impact,
inputs=[
api_key, # Directly pass the api_key component
gr.Textbox(value="Image Analysis", visible=False),
image_input,
gr.Textbox(value="", visible=False),
gr.Textbox(value="", visible=False),
gr.Textbox(value="", visible=False)
],
outputs=image_output
)
image_clear.click(
lambda: "",
inputs=[],
outputs=image_output
)
with gr.TabItem("Geographical Assessment"):
location_input = gr.Textbox(label="Location (city, region, or country)", placeholder="e.g., Paris, France")
location_submit = gr.Button("Analyze Location")
location_output = gr.Textbox(label="Analysis Results", lines=15)
location_clear = gr.Button("Clear Response")
location_submit.click(
analyze_environmental_impact,
inputs=[
api_key, # Directly pass the api_key component
gr.Textbox(value="Geographical Assessment", visible=False),
gr.Image(value=None, visible=False, type="pil"),
gr.Textbox(value="", visible=False),
location_input,
gr.Textbox(value="", visible=False)
],
outputs=location_output
)
location_clear.click(
lambda: "",
inputs=[],
outputs=location_output
)
with gr.TabItem("Product Assessment"):
product_info = gr.Textbox(
label="Product Information",
placeholder="Describe the product, materials, manufacturing process, lifecycle, etc.",
lines=5
)
product_submit = gr.Button("Analyze Product")
product_output = gr.Textbox(label="Analysis Results", lines=15)
product_clear = gr.Button("Clear Response")
product_submit.click(
analyze_environmental_impact,
inputs=[
api_key, # Directly pass the api_key component
gr.Textbox(value="Product Assessment", visible=False),
gr.Image(value=None, visible=False, type="pil"),
gr.Textbox(value="", visible=False),
gr.Textbox(value="", visible=False),
product_info
],
outputs=product_output
)
product_clear.click(
lambda: "",
inputs=[],
outputs=product_output
)
with gr.TabItem("Custom Query"):
custom_input = gr.Textbox(
label="Custom Environmental Query",
placeholder="Enter your environmental question or describe a scenario to analyze",
lines=5
)
custom_submit = gr.Button("Analyze")
custom_output = gr.Textbox(label="Analysis Results", lines=15)
custom_clear = gr.Button("Clear Response")
custom_submit.click(
analyze_environmental_impact,
inputs=[
api_key, # Directly pass the api_key component
gr.Textbox(value="Custom Query", visible=False),
gr.Image(value=None, visible=False, type="pil"),
custom_input,
gr.Textbox(value="", visible=False),
gr.Textbox(value="", visible=False)
],
outputs=custom_output
)
custom_clear.click(
lambda: "",
inputs=[],
outputs=custom_output
)
gr.Markdown("""
### Privacy Notice
Your API key is used only for making requests to OpenRouter and is not stored or logged.
The images and text you submit are processed by Gemini 2.5 Pro through OpenRouter's API.
### Usage Instructions
1. Enter your OpenRouter API key (get one from https://openrouter.ai)
2. Select the type of analysis you want to perform
3. Provide the required information (image, location, product details, or custom query)
4. Click the "Analyze" button for your selected tab
""")
# Launch the app
if __name__ == "__main__":
app.launch()
|