Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import base64
|
5 |
+
import json
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.image as mpimg
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
11 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
12 |
+
from langchain_core.output_parsers import JsonOutputParser
|
13 |
+
from langchain_core.runnables import chain
|
14 |
+
from PIL import Image as PILImage
|
15 |
+
from io import BytesIO
|
16 |
+
|
17 |
+
# Streamlit title
|
18 |
+
st.title("Vehicle Information Extraction from Images")
|
19 |
+
|
20 |
+
# Prompt user for OpenAI API key
|
21 |
+
openai_api_key = st.text_input("Enter your OpenAI API Key:", type="password")
|
22 |
+
|
23 |
+
# Set the OpenAI API key if provided
|
24 |
+
if openai_api_key:
|
25 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
26 |
+
|
27 |
+
# Vehicle class (same as in the original code)
|
28 |
+
class Vehicle(BaseModel):
|
29 |
+
Type: str = Field(..., examples=["Car", "Truck", "Motorcycle", 'Bus', 'Van'], description="The type of the vehicle.")
|
30 |
+
License: str = Field(..., description="The license plate number of the vehicle.")
|
31 |
+
Make: str = Field(..., examples=["Toyota", "Honda", "Ford", "Suzuki"], description="The Make of the vehicle.")
|
32 |
+
Model: str = Field(..., examples=["Corolla", "Civic", "F-150"], description="The Model of the vehicle.")
|
33 |
+
Color: str = Field(..., example=["Red", "Blue", "Black", "White"], description="Return the color of the vehicle.")
|
34 |
+
|
35 |
+
# Parser for vehicle details
|
36 |
+
parser = JsonOutputParser(pydantic_object=Vehicle)
|
37 |
+
instructions = parser.get_format_instructions()
|
38 |
+
|
39 |
+
# Image encoding function (for base64 encoding)
|
40 |
+
def image_encoding(inputs):
|
41 |
+
"""Load and convert image to base64 encoding"""
|
42 |
+
with open(inputs["image_path"], "rb") as image_file:
|
43 |
+
image_base64 = base64.b64encode(image_file.read()).decode("utf-8")
|
44 |
+
return {"image": image_base64}
|
45 |
+
|
46 |
+
# Image display in grid (for multiple images)
|
47 |
+
def display_image_grid(image_paths, rows=2, cols=3, figsize=(10, 7)):
|
48 |
+
fig = plt.figure(figsize=figsize)
|
49 |
+
max_images = rows * cols
|
50 |
+
image_paths = image_paths[:max_images]
|
51 |
+
|
52 |
+
for idx, path in enumerate(image_paths):
|
53 |
+
ax = fig.add_subplot(rows, cols, idx + 1)
|
54 |
+
img = mpimg.imread(path)
|
55 |
+
ax.imshow(img)
|
56 |
+
ax.axis('off')
|
57 |
+
filename = path.split('/')[-1]
|
58 |
+
ax.set_title(filename)
|
59 |
+
|
60 |
+
plt.tight_layout()
|
61 |
+
st.pyplot(fig)
|
62 |
+
|
63 |
+
# Create the prompt for the AI model
|
64 |
+
@chain
|
65 |
+
def prompt(inputs):
|
66 |
+
prompt = [
|
67 |
+
SystemMessage(content="""You are an AI assistant whose job is to inspect an image and provide the desired information from the image. If the desired field is not clear or not well detected, return None for this field. Do not try to guess."""),
|
68 |
+
HumanMessage(
|
69 |
+
content=[{"type": "text", "text": "Examine the main vehicle type, license plate number, make, model and color."},
|
70 |
+
{"type": "text", "text": instructions},
|
71 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{inputs['image']}", "detail": "low"}}]
|
72 |
+
)
|
73 |
+
]
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
# Invoke the model for extracting vehicle details
|
77 |
+
@chain
|
78 |
+
def MLLM_response(inputs):
|
79 |
+
model: ChatOpenAI = ChatOpenAI(model="gpt-4o-2024-08-06", temperature=0.0, max_tokens=1024)
|
80 |
+
output = model.invoke(inputs)
|
81 |
+
return output.content
|
82 |
+
|
83 |
+
# The complete pipeline for extracting vehicle details
|
84 |
+
pipeline = image_encoding | prompt | MLLM_response | parser
|
85 |
+
|
86 |
+
# Streamlit Interface for uploading images and showing results
|
87 |
+
st.header("Upload a Vehicle Image for Information Extraction")
|
88 |
+
|
89 |
+
uploaded_image = st.file_uploader("Choose a JPEG image", type="jpeg")
|
90 |
+
|
91 |
+
if uploaded_image is not None:
|
92 |
+
# Display the uploaded image
|
93 |
+
image = PILImage.open(uploaded_image)
|
94 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
95 |
+
|
96 |
+
# Convert the uploaded image to base64
|
97 |
+
image_path = "/tmp/uploaded_image.jpeg"
|
98 |
+
with open(image_path, "wb") as f:
|
99 |
+
f.write(uploaded_image.getbuffer())
|
100 |
+
|
101 |
+
# Process the image through the pipeline
|
102 |
+
output = pipeline.invoke({"image_path": image_path})
|
103 |
+
|
104 |
+
# Show the results in a user-friendly format
|
105 |
+
st.subheader("Extracted Vehicle Information")
|
106 |
+
st.json(output)
|
107 |
+
|
108 |
+
# Optionally, display more vehicle images from the folder
|
109 |
+
img_dir = "/content/images"
|
110 |
+
image_paths = glob.glob(os.path.join(img_dir, "*.jpeg"))
|
111 |
+
display_image_grid(image_paths)
|
112 |
+
|
113 |
+
# You can also allow users to upload and process a batch of images
|
114 |
+
st.sidebar.header("Batch Image Upload")
|
115 |
+
|
116 |
+
batch_images = st.sidebar.file_uploader("Upload Images", type="jpeg", accept_multiple_files=True)
|
117 |
+
|
118 |
+
if batch_images:
|
119 |
+
batch_input = [{"image_path": f"/tmp/{file.name}"} for file in batch_images]
|
120 |
+
for file in batch_images:
|
121 |
+
with open(f"/tmp/{file.name}", "wb") as f:
|
122 |
+
f.write(file.getbuffer())
|
123 |
+
|
124 |
+
# Process the batch and display the results in a DataFrame
|
125 |
+
batch_output = pipeline.batch(batch_input)
|
126 |
+
df = pd.DataFrame(batch_output)
|
127 |
+
st.dataframe(df)
|
128 |
+
|
129 |
+
# Show images in a grid
|
130 |
+
image_paths = [f"/tmp/{file.name}" for file in batch_images]
|
131 |
+
display_image_grid(image_paths)
|