Spaces:
Sleeping
Sleeping
File size: 1,646 Bytes
afe4a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
from tempfile import NamedTemporaryFile
from audiorecorder import audiorecorder
from whispercpp import Whisper
# Download whisper.cpp
w = Whisper('tiny')
def inference(audio):
# Save audio to a file:
with NamedTemporaryFile(suffix=".mp3") as temp:
with open(f"{temp.name}", "wb") as f:
f.write(audio.tobytes())
result = w.transcribe(f"{temp.name}")
text = w.extract_text(result)
return text[0]
# Streamlit
with st.sidebar:
audio = audiorecorder("Click to send voice message", "Recording... Click when you're done", key="recorder")
st.title("Echo Bot with Whisper")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if (prompt := st.chat_input("Your message")) or len(audio):
# If it's coming from the audio recorder transcribe the message with whisper.cpp
if len(audio)>0:
prompt = inference(audio)
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
response = f"Echo: {prompt}"
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response}) |