Spaces:
Sleeping
Sleeping
File size: 3,119 Bytes
afe4a62 450f755 9fe39cc 9c931f4 9fe39cc 0135b7b c84008c 2303bce 9ddce39 f73130d 2303bce 9fe39cc 058d081 9fe39cc 13faa7d 9fe39cc b76d0bb 9fe39cc b76d0bb 9fe39cc 948da99 450f755 9fe39cc b76d0bb 13faa7d 9fe39cc b76d0bb 9fe39cc 13faa7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import streamlit as st
import hmac
import os
from helpers import text_to_speech, autoplay_audio, speech_to_text, get_api_key
from generate_answer import base_model_chatbot, with_pdf_chatbot
from audio_recorder_streamlit import audio_recorder
from streamlit_float import *
from PIL import Image
# Display image/logo in the "Course Query Assistant" section (optional)
voice = Image.open("8090687.png") # Ensure the file is in the correct directory
st.image(voice, width=100) # Adjust the size as per preference
def main(answer_mode: str):
# Float feature initialization
float_init()
# Prompt for API key
api_key = get_api_key()
if not api_key:
st.error("You must provide a valid OpenAI API Key to proceed.")
st.stop()
def initialize_session_state():
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hi! How may I assist you today? (Please Speak Clearly)"}
]
initialize_session_state()
st.title("OpenAI Conversational Chatbot 🤖")
# Create footer container for the microphone
footer_container = st.container()
with footer_container:
audio_bytes = audio_recorder()
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
if audio_bytes:
# Write the audio bytes to a file
with st.spinner("Transcribing..."):
webm_file_path = "temp_audio.mp3"
with open(webm_file_path, "wb") as f:
f.write(audio_bytes)
transcript = speech_to_text(webm_file_path)
if transcript:
st.session_state.messages.append({"role": "user", "content": transcript})
with st.chat_message("user"):
st.write(transcript)
os.remove(webm_file_path)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking🤔..."):
if answer_mode == 'base_model':
final_response = base_model_chatbot(st.session_state.messages)
elif answer_mode == 'pdf_chat':
final_response = with_pdf_chatbot(st.session_state.messages)
# Add final check for punctuation and completeness
if not final_response.strip()[-1] in ".!?":
final_response += " This is the end of the response. Let me know if you need anything else."
with st.spinner("Generating audio response..."):
audio_file = text_to_speech(final_response)
autoplay_audio(audio_file)
st.write(final_response)
st.session_state.messages.append({"role": "assistant", "content": final_response})
os.remove(audio_file)
# Float the footer container and provide CSS to target it with
footer_container.float("bottom: 0rem;")
if __name__ == "__main__":
main(answer_mode='base_model') # Or: answer_mode='pdf_chat' |