Spaces:
Sleeping
Sleeping
Update generate_answer.py
Browse files- generate_answer.py +16 -28
generate_answer.py
CHANGED
@@ -1,8 +1,9 @@
|
|
|
|
|
|
1 |
import os
|
2 |
from glob import glob
|
3 |
-
# import subprocess
|
4 |
-
|
5 |
import openai
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
@@ -14,34 +15,31 @@ from langchain_community.chat_models import ChatOpenAI
|
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
|
17 |
-
|
18 |
load_dotenv()
|
19 |
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
|
21 |
-
|
22 |
openai.api_key = api_key
|
23 |
|
24 |
-
|
25 |
def base_model_chatbot(messages):
|
26 |
system_message = [
|
27 |
-
{"role": "system", "content": "You are an helpful AI chatbot, that answers questions asked by User."}
|
|
|
28 |
messages = system_message + messages
|
29 |
-
response =
|
30 |
-
model="gpt-3.5-turbo-1106",
|
31 |
messages=messages
|
32 |
)
|
33 |
-
return response.choices[0].message
|
34 |
|
35 |
|
36 |
class VectorDB:
|
37 |
"""Class to manage document loading and vector database creation."""
|
38 |
|
39 |
-
def __init__(self, docs_directory:str):
|
40 |
-
|
41 |
self.docs_directory = docs_directory
|
42 |
|
43 |
def create_vector_db(self):
|
44 |
-
|
45 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
46 |
|
47 |
files = glob(os.path.join(self.docs_directory, "*.pdf"))
|
@@ -61,32 +59,22 @@ class ConversationalRetrievalChain:
|
|
61 |
def __init__(self, model_name="gpt-3.5-turbo", temperature=0):
|
62 |
self.model_name = model_name
|
63 |
self.temperature = temperature
|
64 |
-
|
65 |
-
def create_chain(self):
|
66 |
-
|
67 |
-
model = ChatOpenAI(model_name=self.model_name,
|
68 |
-
temperature=self.temperature,
|
69 |
-
)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
)
|
75 |
vector_db = VectorDB('docs/')
|
76 |
-
retriever = vector_db.create_vector_db().as_retriever(search_type="similarity",
|
77 |
-
search_kwargs={"k": 2},
|
78 |
-
)
|
79 |
return RetrievalQA.from_chain_type(
|
80 |
llm=model,
|
81 |
retriever=retriever,
|
82 |
memory=memory,
|
83 |
-
|
84 |
|
85 |
def with_pdf_chatbot(messages):
|
86 |
"""Main function to execute the QA system."""
|
87 |
query = messages[-1]['content'].strip()
|
88 |
|
89 |
-
|
90 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
91 |
result = qa_chain({"query": query})
|
92 |
-
return result['result']
|
|
|
1 |
+
# generate_answer.py
|
2 |
+
|
3 |
import os
|
4 |
from glob import glob
|
|
|
|
|
5 |
import openai
|
6 |
+
from openai import OpenAI
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
15 |
from langchain.chains import RetrievalQA
|
16 |
from langchain.memory import ConversationBufferMemory
|
17 |
|
|
|
18 |
load_dotenv()
|
19 |
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
|
21 |
+
# Corrected line: Set the OpenAI API key correctly
|
22 |
openai.api_key = api_key
|
23 |
|
|
|
24 |
def base_model_chatbot(messages):
|
25 |
system_message = [
|
26 |
+
{"role": "system", "content": "You are an helpful AI chatbot, that answers questions asked by User."}
|
27 |
+
]
|
28 |
messages = system_message + messages
|
29 |
+
response = openai.ChatCompletion.create(
|
30 |
+
model="gpt-3.5-turbo-1106", # Ensure the model is specified correctly
|
31 |
messages=messages
|
32 |
)
|
33 |
+
return response.choices[0].message['content']
|
34 |
|
35 |
|
36 |
class VectorDB:
|
37 |
"""Class to manage document loading and vector database creation."""
|
38 |
|
39 |
+
def __init__(self, docs_directory: str):
|
|
|
40 |
self.docs_directory = docs_directory
|
41 |
|
42 |
def create_vector_db(self):
|
|
|
43 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
44 |
|
45 |
files = glob(os.path.join(self.docs_directory, "*.pdf"))
|
|
|
59 |
def __init__(self, model_name="gpt-3.5-turbo", temperature=0):
|
60 |
self.model_name = model_name
|
61 |
self.temperature = temperature
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
def create_chain(self):
|
64 |
+
model = ChatOpenAI(model_name=self.model_name, temperature=self.temperature)
|
65 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
66 |
vector_db = VectorDB('docs/')
|
67 |
+
retriever = vector_db.create_vector_db().as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
|
|
|
|
68 |
return RetrievalQA.from_chain_type(
|
69 |
llm=model,
|
70 |
retriever=retriever,
|
71 |
memory=memory,
|
72 |
+
)
|
73 |
|
74 |
def with_pdf_chatbot(messages):
|
75 |
"""Main function to execute the QA system."""
|
76 |
query = messages[-1]['content'].strip()
|
77 |
|
|
|
78 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
79 |
result = qa_chain({"query": query})
|
80 |
+
return result['result']
|