Delete app.py
Browse files
app.py
DELETED
@@ -1,227 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cloudpickle
|
3 |
-
import codecs
|
4 |
-
import string
|
5 |
-
from bnltk.tokenize import Tokenizers
|
6 |
-
|
7 |
-
# Global variables to store loaded models and components
|
8 |
-
model = None
|
9 |
-
tfidf_vectorizer = None
|
10 |
-
tokenizer = None
|
11 |
-
bangla_stopwords = None
|
12 |
-
punctuation_marks = None
|
13 |
-
|
14 |
-
def load_models_and_components():
|
15 |
-
"""Load the saved model, vectorizer, and preprocessing components"""
|
16 |
-
global model, tfidf_vectorizer, tokenizer, bangla_stopwords, punctuation_marks
|
17 |
-
|
18 |
-
try:
|
19 |
-
# Load the SVM Optimized model
|
20 |
-
with open('model.pkl', 'rb') as f:
|
21 |
-
model = cloudpickle.load(f)
|
22 |
-
|
23 |
-
# Load the TF-IDF Vectorizer
|
24 |
-
with open('tfidf_VECt.pkl', 'rb') as f:
|
25 |
-
tfidf_vectorizer = cloudpickle.load(f)
|
26 |
-
|
27 |
-
# Initialize tokenizer
|
28 |
-
tokenizer = Tokenizers()
|
29 |
-
|
30 |
-
# Load stopwords
|
31 |
-
stopwords_list = "stopwords.txt"
|
32 |
-
bangla_stopwords = codecs.open(stopwords_list, 'r', encoding='utf-8').read().split()
|
33 |
-
|
34 |
-
# Define punctuation marks
|
35 |
-
punctuation_marks = set(string.punctuation)
|
36 |
-
|
37 |
-
return "Models and components loaded successfully!"
|
38 |
-
|
39 |
-
except Exception as e:
|
40 |
-
return f"Error loading models: {str(e)}"
|
41 |
-
|
42 |
-
def preprocess_text(text):
|
43 |
-
"""Preprocess the input text similar to training data preprocessing"""
|
44 |
-
# Tokenize the sentence
|
45 |
-
words = tokenizer.bn_word_tokenizer(text)
|
46 |
-
|
47 |
-
# Exclude punctuation marks
|
48 |
-
words_no_punct = [word for word in words if word not in punctuation_marks]
|
49 |
-
|
50 |
-
# Exclude stopwords
|
51 |
-
words_clean = [word for word in words_no_punct if word not in bangla_stopwords]
|
52 |
-
|
53 |
-
# Join words back into a string
|
54 |
-
return ' '.join(words_clean)
|
55 |
-
|
56 |
-
def predict_sentiment(input_text):
|
57 |
-
"""Predict sentiment for the input text"""
|
58 |
-
if not input_text.strip():
|
59 |
-
return "Please enter some text to analyze.", ""
|
60 |
-
|
61 |
-
if model is None or tfidf_vectorizer is None:
|
62 |
-
return "Models not loaded. Please load models first.", ""
|
63 |
-
|
64 |
-
try:
|
65 |
-
# Preprocess the input text
|
66 |
-
processed_text = preprocess_text(input_text)
|
67 |
-
|
68 |
-
if not processed_text.strip():
|
69 |
-
return "After preprocessing, no valid words found. Please try different text.", ""
|
70 |
-
|
71 |
-
# Transform using the loaded TF-IDF vectorizer
|
72 |
-
transformed_input = tfidf_vectorizer.transform([processed_text])
|
73 |
-
|
74 |
-
# Predict using the loaded model
|
75 |
-
prediction = model.predict(transformed_input)[0]
|
76 |
-
|
77 |
-
# Get prediction probability for confidence score
|
78 |
-
prediction_proba = model.predict_proba(transformed_input)[0]
|
79 |
-
confidence = max(prediction_proba) * 100
|
80 |
-
|
81 |
-
# Determine sentiment
|
82 |
-
sentiment = "Positive 😊" if prediction == 1 else "Negative 😞"
|
83 |
-
|
84 |
-
# Create detailed result
|
85 |
-
result = f"**Sentiment:** {sentiment}\n**Confidence:** {confidence:.2f}%"
|
86 |
-
|
87 |
-
# Additional info
|
88 |
-
details = f"**Processed Text:** {processed_text}\n**Raw Prediction:** {prediction}\n**Probabilities:** Negative: {prediction_proba[0]:.3f}, Positive: {prediction_proba[1]:.3f}"
|
89 |
-
|
90 |
-
return result, details
|
91 |
-
|
92 |
-
except Exception as e:
|
93 |
-
return f"Error during prediction: {str(e)}", ""
|
94 |
-
|
95 |
-
def create_gradio_interface():
|
96 |
-
"""Create and configure the Gradio interface"""
|
97 |
-
|
98 |
-
# Custom CSS for better styling
|
99 |
-
css = """
|
100 |
-
.gradio-container {
|
101 |
-
font-family: 'Arial', sans-serif;
|
102 |
-
}
|
103 |
-
.main-header {
|
104 |
-
text-align: center;
|
105 |
-
color: #2d3748;
|
106 |
-
margin-bottom: 20px;
|
107 |
-
}
|
108 |
-
.prediction-box {
|
109 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
110 |
-
color: white;
|
111 |
-
padding: 15px;
|
112 |
-
border-radius: 10px;
|
113 |
-
margin: 10px 0;
|
114 |
-
}
|
115 |
-
"""
|
116 |
-
|
117 |
-
with gr.Blocks(css=css, title="Bengali Sentiment Analysis", theme=gr.themes.Ocean()) as demo:
|
118 |
-
gr.HTML("""
|
119 |
-
<div class="main-header">
|
120 |
-
<h1>🇧🇩 Bengali Sentiment Analysis</h1>
|
121 |
-
<p>Analyze the sentiment of Bengali text using machine learning</p>
|
122 |
-
</div>
|
123 |
-
""")
|
124 |
-
|
125 |
-
with gr.Row():
|
126 |
-
with gr.Column(scale=2):
|
127 |
-
# Input section
|
128 |
-
gr.Markdown("### 📝 Enter Bengali Text")
|
129 |
-
input_text = gr.Textbox(
|
130 |
-
label="Bengali Text",
|
131 |
-
placeholder="এখানে বাংলা টেক্সট লিখুন... (Enter Bengali text here...)",
|
132 |
-
lines=4,
|
133 |
-
max_lines=8
|
134 |
-
)
|
135 |
-
|
136 |
-
with gr.Row():
|
137 |
-
predict_btn = gr.Button("🔍 Analyze Sentiment", variant="primary", size="lg")
|
138 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
139 |
-
|
140 |
-
# Load models button
|
141 |
-
gr.Markdown("### ⚙️ Model Management")
|
142 |
-
load_btn = gr.Button("📥 Load Models", variant="secondary")
|
143 |
-
load_status = gr.Textbox(label="Load Status", interactive=False)
|
144 |
-
|
145 |
-
with gr.Column(scale=2):
|
146 |
-
# Output section
|
147 |
-
gr.Markdown("### 📊 Results")
|
148 |
-
output_sentiment = gr.Markdown(label="Sentiment Analysis Result")
|
149 |
-
output_details = gr.Textbox(
|
150 |
-
label="Analysis Details",
|
151 |
-
lines=6,
|
152 |
-
interactive=False
|
153 |
-
)
|
154 |
-
|
155 |
-
# Examples section
|
156 |
-
gr.Markdown("### 💡 Example Texts to Try")
|
157 |
-
gr.Examples(
|
158 |
-
examples=[
|
159 |
-
["এই পণ্যটি অসাধারণ! আমি খুবই সন্তুষ্ট।"],
|
160 |
-
["এই পণ্যটি কাজ করছে না। খুবই খারাপ।"],
|
161 |
-
["দারুণ সার্ভিস! দ্রুত ডেলিভারি পেয়েছি।"],
|
162 |
-
["প্রোডাক্ট কোয়ালিটি ভালো না। টাকার অপচয়।"],
|
163 |
-
["চমৎকার অভিজ্ঞতা! আবার কিনব।"]
|
164 |
-
],
|
165 |
-
inputs=[input_text],
|
166 |
-
label="Click on any example to try it"
|
167 |
-
)
|
168 |
-
|
169 |
-
# Event handlers
|
170 |
-
predict_btn.click(
|
171 |
-
fn=predict_sentiment,
|
172 |
-
inputs=[input_text],
|
173 |
-
outputs=[output_sentiment, output_details]
|
174 |
-
)
|
175 |
-
|
176 |
-
clear_btn.click(
|
177 |
-
fn=lambda: ("", "", ""),
|
178 |
-
outputs=[input_text, output_sentiment, output_details]
|
179 |
-
)
|
180 |
-
|
181 |
-
load_btn.click(
|
182 |
-
fn=load_models_and_components,
|
183 |
-
outputs=[load_status]
|
184 |
-
)
|
185 |
-
|
186 |
-
# Footer
|
187 |
-
gr.HTML("""
|
188 |
-
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
|
189 |
-
<p><strong>Bengali Sentiment Analysis App</strong></p>
|
190 |
-
<p>Powered by SVM with TF-IDF features | Built with Gradio</p>
|
191 |
-
<p><em>Load the models first, then enter Bengali text to analyze sentiment</em></p>
|
192 |
-
<p><a href="https://drive.google.com/file/d/1VnvNSO2q-qd7SJya3mX7Er2U_5hEyBVl/view?usp=sharing" target="_blank" style="color: #667eea; text-decoration: none; font-weight: bold;">📄 Paper Link</a></p>
|
193 |
-
</div>
|
194 |
-
""")
|
195 |
-
|
196 |
-
return demo
|
197 |
-
|
198 |
-
def main():
|
199 |
-
"""Main function to run the Gradio app"""
|
200 |
-
print("Starting Bengali Sentiment Analysis App...")
|
201 |
-
print("Make sure you have the following files in the specified paths:")
|
202 |
-
print("- model.pkl")
|
203 |
-
print("- tfidf_VECt.pkl")
|
204 |
-
print("- stopwords.txt")
|
205 |
-
|
206 |
-
# Create and launch the interface
|
207 |
-
demo = create_gradio_interface()
|
208 |
-
|
209 |
-
# Launch the app
|
210 |
-
demo.launch(
|
211 |
-
share=True, # Creates a public link
|
212 |
-
inbrowser=True, # Opens in browser automatically
|
213 |
-
server_name="0.0.0.0", # Makes it accessible from any IP
|
214 |
-
server_port=7860, # Port number
|
215 |
-
show_error=True # Shows detailed error messages
|
216 |
-
)
|
217 |
-
|
218 |
-
if __name__ == "__main__":
|
219 |
-
# Install required packages if not already installed
|
220 |
-
try:
|
221 |
-
import gradio
|
222 |
-
except ImportError:
|
223 |
-
print("Installing Gradio...")
|
224 |
-
import subprocess
|
225 |
-
subprocess.check_call(["pip", "install", "gradio"])
|
226 |
-
|
227 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|