Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cloudpickle
|
| 3 |
+
import codecs
|
| 4 |
+
import string
|
| 5 |
+
from bnltk.tokenize import Tokenizers
|
| 6 |
+
|
| 7 |
+
# Global variables to store loaded models and components
|
| 8 |
+
model = None
|
| 9 |
+
tfidf_vectorizer = None
|
| 10 |
+
tokenizer = None
|
| 11 |
+
bangla_stopwords = None
|
| 12 |
+
punctuation_marks = None
|
| 13 |
+
|
| 14 |
+
def load_models_and_components():
|
| 15 |
+
"""Load the saved model, vectorizer, and preprocessing components"""
|
| 16 |
+
global model, tfidf_vectorizer, tokenizer, bangla_stopwords, punctuation_marks
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
# Load the SVM Optimized model
|
| 20 |
+
with open('model.pkl', 'rb') as f:
|
| 21 |
+
model = cloudpickle.load(f)
|
| 22 |
+
|
| 23 |
+
# Load the TF-IDF Vectorizer
|
| 24 |
+
with open('tfidf_VECt.pkl', 'rb') as f:
|
| 25 |
+
tfidf_vectorizer = cloudpickle.load(f)
|
| 26 |
+
|
| 27 |
+
# Initialize tokenizer
|
| 28 |
+
tokenizer = Tokenizers()
|
| 29 |
+
|
| 30 |
+
# Load stopwords
|
| 31 |
+
stopwords_list = "stopwords.txt"
|
| 32 |
+
bangla_stopwords = codecs.open(stopwords_list, 'r', encoding='utf-8').read().split()
|
| 33 |
+
|
| 34 |
+
# Define punctuation marks
|
| 35 |
+
punctuation_marks = set(string.punctuation)
|
| 36 |
+
|
| 37 |
+
return "Models and components loaded successfully!"
|
| 38 |
+
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return f"Error loading models: {str(e)}"
|
| 41 |
+
|
| 42 |
+
def preprocess_text(text):
|
| 43 |
+
"""Preprocess the input text similar to training data preprocessing"""
|
| 44 |
+
# Tokenize the sentence
|
| 45 |
+
words = tokenizer.bn_word_tokenizer(text)
|
| 46 |
+
|
| 47 |
+
# Exclude punctuation marks
|
| 48 |
+
words_no_punct = [word for word in words if word not in punctuation_marks]
|
| 49 |
+
|
| 50 |
+
# Exclude stopwords
|
| 51 |
+
words_clean = [word for word in words_no_punct if word not in bangla_stopwords]
|
| 52 |
+
|
| 53 |
+
# Join words back into a string
|
| 54 |
+
return ' '.join(words_clean)
|
| 55 |
+
|
| 56 |
+
def predict_sentiment(input_text):
|
| 57 |
+
"""Predict sentiment for the input text"""
|
| 58 |
+
if not input_text.strip():
|
| 59 |
+
return "Please enter some text to analyze.", ""
|
| 60 |
+
|
| 61 |
+
if model is None or tfidf_vectorizer is None:
|
| 62 |
+
return "Models not loaded. Please load models first.", ""
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Preprocess the input text
|
| 66 |
+
processed_text = preprocess_text(input_text)
|
| 67 |
+
|
| 68 |
+
if not processed_text.strip():
|
| 69 |
+
return "After preprocessing, no valid words found. Please try different text.", ""
|
| 70 |
+
|
| 71 |
+
# Transform using the loaded TF-IDF vectorizer
|
| 72 |
+
transformed_input = tfidf_vectorizer.transform([processed_text])
|
| 73 |
+
|
| 74 |
+
# Predict using the loaded model
|
| 75 |
+
prediction = model.predict(transformed_input)[0]
|
| 76 |
+
|
| 77 |
+
# Get prediction probability for confidence score
|
| 78 |
+
prediction_proba = model.predict_proba(transformed_input)[0]
|
| 79 |
+
confidence = max(prediction_proba) * 100
|
| 80 |
+
|
| 81 |
+
# Determine sentiment
|
| 82 |
+
sentiment = "Positive 😊" if prediction == 1 else "Negative 😞"
|
| 83 |
+
|
| 84 |
+
# Create detailed result
|
| 85 |
+
result = f"**Sentiment:** {sentiment}\n**Confidence:** {confidence:.2f}%"
|
| 86 |
+
|
| 87 |
+
# Additional info
|
| 88 |
+
details = f"**Processed Text:** {processed_text}\n**Raw Prediction:** {prediction}\n**Probabilities:** Negative: {prediction_proba[0]:.3f}, Positive: {prediction_proba[1]:.3f}"
|
| 89 |
+
|
| 90 |
+
return result, details
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
return f"Error during prediction: {str(e)}", ""
|
| 94 |
+
|
| 95 |
+
def create_gradio_interface():
|
| 96 |
+
"""Create and configure the Gradio interface"""
|
| 97 |
+
|
| 98 |
+
# Custom CSS for better styling
|
| 99 |
+
css = """
|
| 100 |
+
.gradio-container {
|
| 101 |
+
font-family: 'Arial', sans-serif;
|
| 102 |
+
}
|
| 103 |
+
.main-header {
|
| 104 |
+
text-align: center;
|
| 105 |
+
color: #2d3748;
|
| 106 |
+
margin-bottom: 20px;
|
| 107 |
+
}
|
| 108 |
+
.prediction-box {
|
| 109 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 110 |
+
color: white;
|
| 111 |
+
padding: 15px;
|
| 112 |
+
border-radius: 10px;
|
| 113 |
+
margin: 10px 0;
|
| 114 |
+
}
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
with gr.Blocks(css=css, title="Bengali Sentiment Analysis") as demo:
|
| 118 |
+
gr.HTML("""
|
| 119 |
+
<div class="main-header">
|
| 120 |
+
<h1>🇧🇩 Bengali Sentiment Analysis</h1>
|
| 121 |
+
<p>Analyze the sentiment of Bengali text using machine learning</p>
|
| 122 |
+
</div>
|
| 123 |
+
""")
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column(scale=2):
|
| 127 |
+
# Input section
|
| 128 |
+
gr.Markdown("### 📝 Enter Bengali Text")
|
| 129 |
+
input_text = gr.Textbox(
|
| 130 |
+
label="Bengali Text",
|
| 131 |
+
placeholder="এখানে বাংলা টেক্সট লিখুন... (Enter Bengali text here...)",
|
| 132 |
+
lines=4,
|
| 133 |
+
max_lines=8
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
with gr.Row():
|
| 137 |
+
predict_btn = gr.Button("🔍 Analyze Sentiment", variant="primary", size="lg")
|
| 138 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 139 |
+
|
| 140 |
+
# Load models button
|
| 141 |
+
gr.Markdown("### ⚙️ Model Management")
|
| 142 |
+
load_btn = gr.Button("📥 Load Models", variant="secondary")
|
| 143 |
+
load_status = gr.Textbox(label="Load Status", interactive=False)
|
| 144 |
+
|
| 145 |
+
with gr.Column(scale=2):
|
| 146 |
+
# Output section
|
| 147 |
+
gr.Markdown("### 📊 Results")
|
| 148 |
+
output_sentiment = gr.Markdown(label="Sentiment Analysis Result")
|
| 149 |
+
output_details = gr.Textbox(
|
| 150 |
+
label="Analysis Details",
|
| 151 |
+
lines=6,
|
| 152 |
+
interactive=False
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Examples section
|
| 156 |
+
gr.Markdown("### 💡 Example Texts to Try")
|
| 157 |
+
gr.Examples(
|
| 158 |
+
examples=[
|
| 159 |
+
["এই পণ্যটি অসাধারণ! আমি খুবই সন্তুষ্ট।"],
|
| 160 |
+
["এই পণ্যটি কাজ করছে না। খুবই খারাপ।"],
|
| 161 |
+
["দারুণ সার্ভিস! দ্রুত ডেলিভারি পেয়েছি।"],
|
| 162 |
+
["প্রোডাক্ট কোয়ালিটি ভালো না। টাকার অপচয়।"],
|
| 163 |
+
["চমৎকার অভিজ্ঞতা! আবার কিনব।"]
|
| 164 |
+
],
|
| 165 |
+
inputs=[input_text],
|
| 166 |
+
label="Click on any example to try it"
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Event handlers
|
| 170 |
+
predict_btn.click(
|
| 171 |
+
fn=predict_sentiment,
|
| 172 |
+
inputs=[input_text],
|
| 173 |
+
outputs=[output_sentiment, output_details]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
clear_btn.click(
|
| 177 |
+
fn=lambda: ("", "", ""),
|
| 178 |
+
outputs=[input_text, output_sentiment, output_details]
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
load_btn.click(
|
| 182 |
+
fn=load_models_and_components,
|
| 183 |
+
outputs=[load_status]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Footer
|
| 187 |
+
gr.HTML("""
|
| 188 |
+
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
|
| 189 |
+
<p><strong>Bengali Sentiment Analysis App</strong></p>
|
| 190 |
+
<p>Powered by SVM with TF-IDF features | Built with Gradio</p>
|
| 191 |
+
<p><em>Load the models first, then enter Bengali text to analyze sentiment</em></p>
|
| 192 |
+
</div>
|
| 193 |
+
""")
|
| 194 |
+
|
| 195 |
+
return demo
|
| 196 |
+
|
| 197 |
+
def main():
|
| 198 |
+
"""Main function to run the Gradio app"""
|
| 199 |
+
print("Starting Bengali Sentiment Analysis App...")
|
| 200 |
+
print("Make sure you have the following files in the specified paths:")
|
| 201 |
+
print("- model.pkl")
|
| 202 |
+
print("- tfidf_VECt.pkl")
|
| 203 |
+
print("- stopwords.txt")
|
| 204 |
+
|
| 205 |
+
# Create and launch the interface
|
| 206 |
+
demo = create_gradio_interface()
|
| 207 |
+
|
| 208 |
+
# Launch the app
|
| 209 |
+
demo.launch(
|
| 210 |
+
share=True, # Creates a public link
|
| 211 |
+
inbrowser=True, # Opens in browser automatically
|
| 212 |
+
server_name="0.0.0.0", # Makes it accessible from any IP
|
| 213 |
+
server_port=7860, # Port number
|
| 214 |
+
show_error=True # Shows detailed error messages
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
if __name__ == "__main__":
|
| 218 |
+
# Install required packages if not already installed
|
| 219 |
+
try:
|
| 220 |
+
import gradio
|
| 221 |
+
except ImportError:
|
| 222 |
+
print("Installing Gradio...")
|
| 223 |
+
import subprocess
|
| 224 |
+
subprocess.check_call(["pip", "install", "gradio"])
|
| 225 |
+
|
| 226 |
+
main()
|