Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,13 @@ from pathlib import Path
|
|
12 |
try:
|
13 |
from together import Together
|
14 |
import PyPDF2
|
15 |
-
from PIL import Image
|
16 |
import speech_recognition as sr
|
17 |
import io
|
18 |
import subprocess
|
19 |
import sys
|
20 |
except ImportError as e:
|
21 |
print(f"Missing dependency: {e}")
|
22 |
-
print("Install with: pip install together PyPDF2
|
23 |
sys.exit(1)
|
24 |
|
25 |
class ConversationMemory:
|
@@ -34,7 +33,7 @@ class ConversationMemory:
|
|
34 |
interaction = {
|
35 |
"timestamp": datetime.now().isoformat(),
|
36 |
"input_type": input_type,
|
37 |
-
"content": content[:500] + "..." if len(content) > 500 else content,
|
38 |
"response": response[:1000] + "..." if len(response) > 1000 else response,
|
39 |
"metadata": metadata or {}
|
40 |
}
|
@@ -47,25 +46,22 @@ class ConversationMemory:
|
|
47 |
self.session_data = {}
|
48 |
|
49 |
def get_relevant_context(self, query: str, limit: int = 3) -> List[Dict]:
|
50 |
-
# Simple relevance scoring - in production, use embeddings
|
51 |
relevant = []
|
52 |
query_lower = query.lower()
|
53 |
|
54 |
-
for conv in reversed(self.conversations[-10:]):
|
55 |
score = 0
|
56 |
content_lower = conv["content"].lower()
|
57 |
response_lower = conv["response"].lower()
|
58 |
|
59 |
-
# Simple keyword matching
|
60 |
for word in query_lower.split():
|
61 |
-
if len(word) > 3:
|
62 |
if word in content_lower or word in response_lower:
|
63 |
score += 1
|
64 |
|
65 |
if score > 0:
|
66 |
relevant.append((score, conv))
|
67 |
|
68 |
-
# Sort by relevance and return top results
|
69 |
relevant.sort(key=lambda x: x[0], reverse=True)
|
70 |
return [conv for score, conv in relevant[:limit]]
|
71 |
|
@@ -101,33 +97,6 @@ class NexusAI:
|
|
101 |
except Exception as e:
|
102 |
return f"Error reading PDF: {str(e)}"
|
103 |
|
104 |
-
def analyze_image(self, image_path: str) -> str:
|
105 |
-
"""Analyze image and return description"""
|
106 |
-
try:
|
107 |
-
with Image.open(image_path) as img:
|
108 |
-
# Basic image analysis - in production, use vision models
|
109 |
-
width, height = img.size
|
110 |
-
mode = img.mode
|
111 |
-
format_type = img.format
|
112 |
-
|
113 |
-
description = f"Image Analysis:\n"
|
114 |
-
description += f"- Dimensions: {width}x{height} pixels\n"
|
115 |
-
description += f"- Color mode: {mode}\n"
|
116 |
-
description += f"- Format: {format_type}\n"
|
117 |
-
|
118 |
-
# Simple color analysis
|
119 |
-
if mode == "RGB":
|
120 |
-
# Get dominant colors (simplified)
|
121 |
-
img_small = img.resize((50, 50))
|
122 |
-
colors = img_small.getcolors(2500)
|
123 |
-
if colors:
|
124 |
-
dominant_color = max(colors, key=lambda x: x[0])[1]
|
125 |
-
description += f"- Dominant color (RGB): {dominant_color}\n"
|
126 |
-
|
127 |
-
return description
|
128 |
-
except Exception as e:
|
129 |
-
return f"Error analyzing image: {str(e)}"
|
130 |
-
|
131 |
def transcribe_audio(self, audio_path: str) -> str:
|
132 |
"""Transcribe audio to text"""
|
133 |
try:
|
@@ -143,12 +112,10 @@ class NexusAI:
|
|
143 |
"""Execute code safely (basic implementation)"""
|
144 |
try:
|
145 |
if language.lower() == "python":
|
146 |
-
# Create a temporary file
|
147 |
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
|
148 |
f.write(code)
|
149 |
temp_file = f.name
|
150 |
|
151 |
-
# Execute with timeout
|
152 |
try:
|
153 |
result = subprocess.run([sys.executable, temp_file],
|
154 |
capture_output=True, text=True, timeout=10)
|
@@ -169,14 +136,12 @@ class NexusAI:
|
|
169 |
"""Build context messages for the AI model"""
|
170 |
messages = []
|
171 |
|
172 |
-
# Add system message
|
173 |
system_msg = """You are Nexus AI, a creative multimodal assistant that helps users across different types of content.
|
174 |
-
You excel at connecting insights across text, documents,
|
175 |
contextual responses that build on previous interactions when relevant."""
|
176 |
|
177 |
messages.append({"role": "system", "content": system_msg})
|
178 |
|
179 |
-
# Add relevant conversation history
|
180 |
relevant_context = self.memory.get_relevant_context(user_input)
|
181 |
for context in relevant_context:
|
182 |
messages.append({
|
@@ -184,7 +149,6 @@ class NexusAI:
|
|
184 |
"content": f"[Previous {context['input_type']} interaction] {context['response'][:200]}..."
|
185 |
})
|
186 |
|
187 |
-
# Build current user message
|
188 |
current_content = f"Input Type: {input_type}\n\n"
|
189 |
|
190 |
if extracted_content:
|
@@ -213,7 +177,6 @@ class NexusAI:
|
|
213 |
|
214 |
ai_response = response.choices[0].message.content
|
215 |
|
216 |
-
# Store interaction in memory
|
217 |
self.memory.add_interaction(
|
218 |
input_type=input_type,
|
219 |
content=user_input + ("\n" + extracted_content if extracted_content else ""),
|
@@ -225,7 +188,6 @@ class NexusAI:
|
|
225 |
except Exception as e:
|
226 |
return f"β Error generating response: {str(e)}"
|
227 |
|
228 |
-
# Initialize the AI assistant
|
229 |
nexus_ai = NexusAI()
|
230 |
|
231 |
def initialize_api_key(api_key: str) -> Tuple[str, str]:
|
@@ -255,7 +217,6 @@ def process_pdf_input(pdf_file, user_question: str, api_key_status: str) -> str:
|
|
255 |
if pdf_file is None:
|
256 |
return "Please upload a PDF file first!"
|
257 |
|
258 |
-
# Extract text from PDF - pdf_file is already a file path string
|
259 |
extracted_text = nexus_ai.extract_text_from_pdf(pdf_file)
|
260 |
|
261 |
if user_question.strip():
|
@@ -263,22 +224,6 @@ def process_pdf_input(pdf_file, user_question: str, api_key_status: str) -> str:
|
|
263 |
else:
|
264 |
return nexus_ai.generate_response("Please summarize this document", "pdf", extracted_text)
|
265 |
|
266 |
-
def process_image_input(image_file, user_question: str, api_key_status: str) -> str:
|
267 |
-
"""Process image input with question"""
|
268 |
-
if api_key_status != "success":
|
269 |
-
return "β Please initialize your Together AI API key first!"
|
270 |
-
|
271 |
-
if image_file is None:
|
272 |
-
return "Please upload an image file first!"
|
273 |
-
|
274 |
-
# Analyze image - image_file is already a file path string
|
275 |
-
image_analysis = nexus_ai.analyze_image(image_file)
|
276 |
-
|
277 |
-
if user_question.strip():
|
278 |
-
return nexus_ai.generate_response(user_question, "image", image_analysis)
|
279 |
-
else:
|
280 |
-
return nexus_ai.generate_response("What can you tell me about this image?", "image", image_analysis)
|
281 |
-
|
282 |
def process_audio_input(audio_file, user_question: str, api_key_status: str) -> str:
|
283 |
"""Process audio input with question"""
|
284 |
if api_key_status != "success":
|
@@ -287,7 +232,6 @@ def process_audio_input(audio_file, user_question: str, api_key_status: str) ->
|
|
287 |
if audio_file is None:
|
288 |
return "Please upload an audio file first!"
|
289 |
|
290 |
-
# Transcribe audio - audio_file is already a file path string
|
291 |
transcribed_text = nexus_ai.transcribe_audio(audio_file)
|
292 |
|
293 |
if user_question.strip():
|
@@ -324,7 +268,7 @@ def show_conversation_history() -> str:
|
|
324 |
return "No conversation history yet. Start chatting to build your knowledge base!"
|
325 |
|
326 |
history = "## π Recent Conversation History\n\n"
|
327 |
-
for i, conv in enumerate(nexus_ai.memory.conversations[-10:], 1):
|
328 |
timestamp = datetime.fromisoformat(conv["timestamp"]).strftime("%H:%M:%S")
|
329 |
history += f"**{i}. [{conv['input_type'].upper()}] {timestamp}**\n"
|
330 |
history += f"Input: {conv['content'][:100]}{'...' if len(conv['content']) > 100 else ''}\n"
|
@@ -337,20 +281,17 @@ def clear_conversation_history() -> str:
|
|
337 |
nexus_ai.memory.clear_history()
|
338 |
return "β
Conversation history has been cleared!"
|
339 |
|
340 |
-
# Create the Gradio interface
|
341 |
def create_nexus_interface():
|
342 |
with gr.Blocks(
|
343 |
theme=gr.themes.Soft(),
|
344 |
title="Nexus AI Assistant",
|
345 |
css="""
|
346 |
-
/* Center the main container */
|
347 |
.gradio-container {
|
348 |
max-width: 1400px !important;
|
349 |
margin: 0 auto !important;
|
350 |
padding: 20px !important;
|
351 |
}
|
352 |
|
353 |
-
/* API Key section styling */
|
354 |
.api-key-section {
|
355 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
356 |
border-radius: 12px;
|
@@ -360,7 +301,6 @@ def create_nexus_interface():
|
|
360 |
border: 1px solid #e1e8ed;
|
361 |
}
|
362 |
|
363 |
-
/* Button styling */
|
364 |
.primary-button {
|
365 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
366 |
border: none !important;
|
@@ -395,20 +335,17 @@ def create_nexus_interface():
|
|
395 |
transition: all 0.3s ease !important;
|
396 |
}
|
397 |
|
398 |
-
/* Tab styling */
|
399 |
.tab-nav button {
|
400 |
border-radius: 8px 8px 0 0 !important;
|
401 |
font-weight: 500 !important;
|
402 |
padding: 12px 20px !important;
|
403 |
}
|
404 |
|
405 |
-
/* Text area with scrollbar */
|
406 |
.scrollable-textarea textarea {
|
407 |
overflow-y: auto !important;
|
408 |
resize: vertical !important;
|
409 |
}
|
410 |
|
411 |
-
/* Card styling for better visual separation */
|
412 |
.input-card {
|
413 |
background: #ffffff;
|
414 |
border-radius: 10px;
|
@@ -426,7 +363,6 @@ def create_nexus_interface():
|
|
426 |
border: 1px solid #e9ecef;
|
427 |
}
|
428 |
|
429 |
-
/* Header gradient animation */
|
430 |
.header-gradient {
|
431 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #667eea 100%);
|
432 |
background-size: 200% 200%;
|
@@ -439,7 +375,6 @@ def create_nexus_interface():
|
|
439 |
100% { background-position: 0% 50%; }
|
440 |
}
|
441 |
|
442 |
-
/* Status indicator */
|
443 |
.status-success {
|
444 |
border-left: 4px solid #00b894 !important;
|
445 |
background-color: #d1f2eb !important;
|
@@ -450,7 +385,6 @@ def create_nexus_interface():
|
|
450 |
background-color: #fadbd8 !important;
|
451 |
}
|
452 |
|
453 |
-
/* Responsive design */
|
454 |
@media (max-width: 768px) {
|
455 |
.gradio-container {
|
456 |
padding: 10px !important;
|
@@ -459,7 +393,6 @@ def create_nexus_interface():
|
|
459 |
"""
|
460 |
) as app:
|
461 |
|
462 |
-
# Header
|
463 |
gr.HTML("""
|
464 |
<div class="header-gradient" style="text-align: center; padding: 30px; border-radius: 15px; margin-bottom: 25px;">
|
465 |
<h1 style="color: white; margin: 0; font-size: 3em; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
|
@@ -471,7 +404,6 @@ def create_nexus_interface():
|
|
471 |
</div>
|
472 |
""")
|
473 |
|
474 |
-
# API Key Section
|
475 |
with gr.Group(elem_classes=["api-key-section"]):
|
476 |
gr.HTML("<h3 style='margin-top: 0; color: #2d3748;'>π API Configuration</h3>")
|
477 |
with gr.Row():
|
@@ -496,13 +428,10 @@ def create_nexus_interface():
|
|
496 |
elem_classes=["scrollable-textarea"]
|
497 |
)
|
498 |
|
499 |
-
# Hidden state to track API key status
|
500 |
api_key_state = gr.State(value="not_initialized")
|
501 |
|
502 |
-
# Main Interface Tabs
|
503 |
with gr.Tabs():
|
504 |
|
505 |
-
# Text Chat Tab
|
506 |
with gr.Tab("π¬ Text Chat"):
|
507 |
with gr.Row():
|
508 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
@@ -526,7 +455,6 @@ def create_nexus_interface():
|
|
526 |
elem_classes=["scrollable-textarea"]
|
527 |
)
|
528 |
|
529 |
-
# PDF Analysis Tab
|
530 |
with gr.Tab("π PDF Analysis"):
|
531 |
with gr.Row():
|
532 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
@@ -554,35 +482,6 @@ def create_nexus_interface():
|
|
554 |
elem_classes=["scrollable-textarea"]
|
555 |
)
|
556 |
|
557 |
-
# Image Analysis Tab
|
558 |
-
with gr.Tab("πΌοΈ Image Analysis"):
|
559 |
-
with gr.Row():
|
560 |
-
with gr.Column(scale=1, elem_classes=["input-card"]):
|
561 |
-
image_file = gr.Image(
|
562 |
-
label="Upload Image",
|
563 |
-
type="filepath"
|
564 |
-
)
|
565 |
-
image_question = gr.Textbox(
|
566 |
-
label="Question about Image (optional)",
|
567 |
-
placeholder="What would you like to know about this image?",
|
568 |
-
lines=3,
|
569 |
-
elem_classes=["scrollable-textarea"]
|
570 |
-
)
|
571 |
-
image_btn = gr.Button(
|
572 |
-
"Analyze Image",
|
573 |
-
variant="primary",
|
574 |
-
elem_classes=["primary-button"]
|
575 |
-
)
|
576 |
-
|
577 |
-
with gr.Column(scale=1, elem_classes=["output-card"]):
|
578 |
-
image_output = gr.Textbox(
|
579 |
-
label="Analysis Result",
|
580 |
-
lines=12,
|
581 |
-
interactive=False,
|
582 |
-
elem_classes=["scrollable-textarea"]
|
583 |
-
)
|
584 |
-
|
585 |
-
# Voice Processing Tab
|
586 |
with gr.Tab("π€ Voice Processing"):
|
587 |
with gr.Row():
|
588 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
@@ -610,7 +509,6 @@ def create_nexus_interface():
|
|
610 |
elem_classes=["scrollable-textarea"]
|
611 |
)
|
612 |
|
613 |
-
# Code Executor Tab
|
614 |
with gr.Tab("β‘ Code Executor"):
|
615 |
with gr.Row():
|
616 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
@@ -646,7 +544,6 @@ def create_nexus_interface():
|
|
646 |
elem_classes=["scrollable-textarea"]
|
647 |
)
|
648 |
|
649 |
-
# Memory & History Tab
|
650 |
with gr.Tab("π§ Memory & History"):
|
651 |
with gr.Column(elem_classes=["input-card"]):
|
652 |
gr.HTML("<h3 style='margin-top: 0;'>Conversation Memory</h3>")
|
@@ -673,7 +570,6 @@ def create_nexus_interface():
|
|
673 |
elem_classes=["scrollable-textarea"]
|
674 |
)
|
675 |
|
676 |
-
# Event handlers
|
677 |
def update_api_status(api_key):
|
678 |
message, status = initialize_api_key(api_key)
|
679 |
if status == "success":
|
@@ -699,12 +595,6 @@ def create_nexus_interface():
|
|
699 |
outputs=[pdf_output]
|
700 |
)
|
701 |
|
702 |
-
image_btn.click(
|
703 |
-
fn=process_image_input,
|
704 |
-
inputs=[image_file, image_question, api_key_state],
|
705 |
-
outputs=[image_output]
|
706 |
-
)
|
707 |
-
|
708 |
audio_btn.click(
|
709 |
fn=process_audio_input,
|
710 |
inputs=[audio_file, audio_question, api_key_state],
|
@@ -727,7 +617,6 @@ def create_nexus_interface():
|
|
727 |
outputs=[history_output]
|
728 |
)
|
729 |
|
730 |
-
# Footer
|
731 |
gr.HTML("""
|
732 |
<div style="text-align: center; padding: 25px; margin-top: 30px; border-top: 2px solid #e9ecef; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); border-radius: 10px;">
|
733 |
<p style="color: #495057; font-size: 1.1em; margin: 0;">
|
@@ -741,7 +630,6 @@ def create_nexus_interface():
|
|
741 |
|
742 |
return app
|
743 |
|
744 |
-
# Launch the application
|
745 |
if __name__ == "__main__":
|
746 |
app = create_nexus_interface()
|
747 |
app.launch(
|
|
|
12 |
try:
|
13 |
from together import Together
|
14 |
import PyPDF2
|
|
|
15 |
import speech_recognition as sr
|
16 |
import io
|
17 |
import subprocess
|
18 |
import sys
|
19 |
except ImportError as e:
|
20 |
print(f"Missing dependency: {e}")
|
21 |
+
print("Install with: pip install together PyPDF2 speechrecognition pyaudio")
|
22 |
sys.exit(1)
|
23 |
|
24 |
class ConversationMemory:
|
|
|
33 |
interaction = {
|
34 |
"timestamp": datetime.now().isoformat(),
|
35 |
"input_type": input_type,
|
36 |
+
"content": content[:500] + "..." if len(content) > 500 else content,
|
37 |
"response": response[:1000] + "..." if len(response) > 1000 else response,
|
38 |
"metadata": metadata or {}
|
39 |
}
|
|
|
46 |
self.session_data = {}
|
47 |
|
48 |
def get_relevant_context(self, query: str, limit: int = 3) -> List[Dict]:
|
|
|
49 |
relevant = []
|
50 |
query_lower = query.lower()
|
51 |
|
52 |
+
for conv in reversed(self.conversations[-10:]):
|
53 |
score = 0
|
54 |
content_lower = conv["content"].lower()
|
55 |
response_lower = conv["response"].lower()
|
56 |
|
|
|
57 |
for word in query_lower.split():
|
58 |
+
if len(word) > 3:
|
59 |
if word in content_lower or word in response_lower:
|
60 |
score += 1
|
61 |
|
62 |
if score > 0:
|
63 |
relevant.append((score, conv))
|
64 |
|
|
|
65 |
relevant.sort(key=lambda x: x[0], reverse=True)
|
66 |
return [conv for score, conv in relevant[:limit]]
|
67 |
|
|
|
97 |
except Exception as e:
|
98 |
return f"Error reading PDF: {str(e)}"
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def transcribe_audio(self, audio_path: str) -> str:
|
101 |
"""Transcribe audio to text"""
|
102 |
try:
|
|
|
112 |
"""Execute code safely (basic implementation)"""
|
113 |
try:
|
114 |
if language.lower() == "python":
|
|
|
115 |
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
|
116 |
f.write(code)
|
117 |
temp_file = f.name
|
118 |
|
|
|
119 |
try:
|
120 |
result = subprocess.run([sys.executable, temp_file],
|
121 |
capture_output=True, text=True, timeout=10)
|
|
|
136 |
"""Build context messages for the AI model"""
|
137 |
messages = []
|
138 |
|
|
|
139 |
system_msg = """You are Nexus AI, a creative multimodal assistant that helps users across different types of content.
|
140 |
+
You excel at connecting insights across text, documents, voice, and code. Always provide helpful,
|
141 |
contextual responses that build on previous interactions when relevant."""
|
142 |
|
143 |
messages.append({"role": "system", "content": system_msg})
|
144 |
|
|
|
145 |
relevant_context = self.memory.get_relevant_context(user_input)
|
146 |
for context in relevant_context:
|
147 |
messages.append({
|
|
|
149 |
"content": f"[Previous {context['input_type']} interaction] {context['response'][:200]}..."
|
150 |
})
|
151 |
|
|
|
152 |
current_content = f"Input Type: {input_type}\n\n"
|
153 |
|
154 |
if extracted_content:
|
|
|
177 |
|
178 |
ai_response = response.choices[0].message.content
|
179 |
|
|
|
180 |
self.memory.add_interaction(
|
181 |
input_type=input_type,
|
182 |
content=user_input + ("\n" + extracted_content if extracted_content else ""),
|
|
|
188 |
except Exception as e:
|
189 |
return f"β Error generating response: {str(e)}"
|
190 |
|
|
|
191 |
nexus_ai = NexusAI()
|
192 |
|
193 |
def initialize_api_key(api_key: str) -> Tuple[str, str]:
|
|
|
217 |
if pdf_file is None:
|
218 |
return "Please upload a PDF file first!"
|
219 |
|
|
|
220 |
extracted_text = nexus_ai.extract_text_from_pdf(pdf_file)
|
221 |
|
222 |
if user_question.strip():
|
|
|
224 |
else:
|
225 |
return nexus_ai.generate_response("Please summarize this document", "pdf", extracted_text)
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def process_audio_input(audio_file, user_question: str, api_key_status: str) -> str:
|
228 |
"""Process audio input with question"""
|
229 |
if api_key_status != "success":
|
|
|
232 |
if audio_file is None:
|
233 |
return "Please upload an audio file first!"
|
234 |
|
|
|
235 |
transcribed_text = nexus_ai.transcribe_audio(audio_file)
|
236 |
|
237 |
if user_question.strip():
|
|
|
268 |
return "No conversation history yet. Start chatting to build your knowledge base!"
|
269 |
|
270 |
history = "## π Recent Conversation History\n\n"
|
271 |
+
for i, conv in enumerate(nexus_ai.memory.conversations[-10:], 1):
|
272 |
timestamp = datetime.fromisoformat(conv["timestamp"]).strftime("%H:%M:%S")
|
273 |
history += f"**{i}. [{conv['input_type'].upper()}] {timestamp}**\n"
|
274 |
history += f"Input: {conv['content'][:100]}{'...' if len(conv['content']) > 100 else ''}\n"
|
|
|
281 |
nexus_ai.memory.clear_history()
|
282 |
return "β
Conversation history has been cleared!"
|
283 |
|
|
|
284 |
def create_nexus_interface():
|
285 |
with gr.Blocks(
|
286 |
theme=gr.themes.Soft(),
|
287 |
title="Nexus AI Assistant",
|
288 |
css="""
|
|
|
289 |
.gradio-container {
|
290 |
max-width: 1400px !important;
|
291 |
margin: 0 auto !important;
|
292 |
padding: 20px !important;
|
293 |
}
|
294 |
|
|
|
295 |
.api-key-section {
|
296 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
297 |
border-radius: 12px;
|
|
|
301 |
border: 1px solid #e1e8ed;
|
302 |
}
|
303 |
|
|
|
304 |
.primary-button {
|
305 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
306 |
border: none !important;
|
|
|
335 |
transition: all 0.3s ease !important;
|
336 |
}
|
337 |
|
|
|
338 |
.tab-nav button {
|
339 |
border-radius: 8px 8px 0 0 !important;
|
340 |
font-weight: 500 !important;
|
341 |
padding: 12px 20px !important;
|
342 |
}
|
343 |
|
|
|
344 |
.scrollable-textarea textarea {
|
345 |
overflow-y: auto !important;
|
346 |
resize: vertical !important;
|
347 |
}
|
348 |
|
|
|
349 |
.input-card {
|
350 |
background: #ffffff;
|
351 |
border-radius: 10px;
|
|
|
363 |
border: 1px solid #e9ecef;
|
364 |
}
|
365 |
|
|
|
366 |
.header-gradient {
|
367 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #667eea 100%);
|
368 |
background-size: 200% 200%;
|
|
|
375 |
100% { background-position: 0% 50%; }
|
376 |
}
|
377 |
|
|
|
378 |
.status-success {
|
379 |
border-left: 4px solid #00b894 !important;
|
380 |
background-color: #d1f2eb !important;
|
|
|
385 |
background-color: #fadbd8 !important;
|
386 |
}
|
387 |
|
|
|
388 |
@media (max-width: 768px) {
|
389 |
.gradio-container {
|
390 |
padding: 10px !important;
|
|
|
393 |
"""
|
394 |
) as app:
|
395 |
|
|
|
396 |
gr.HTML("""
|
397 |
<div class="header-gradient" style="text-align: center; padding: 30px; border-radius: 15px; margin-bottom: 25px;">
|
398 |
<h1 style="color: white; margin: 0; font-size: 3em; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
|
|
|
404 |
</div>
|
405 |
""")
|
406 |
|
|
|
407 |
with gr.Group(elem_classes=["api-key-section"]):
|
408 |
gr.HTML("<h3 style='margin-top: 0; color: #2d3748;'>π API Configuration</h3>")
|
409 |
with gr.Row():
|
|
|
428 |
elem_classes=["scrollable-textarea"]
|
429 |
)
|
430 |
|
|
|
431 |
api_key_state = gr.State(value="not_initialized")
|
432 |
|
|
|
433 |
with gr.Tabs():
|
434 |
|
|
|
435 |
with gr.Tab("π¬ Text Chat"):
|
436 |
with gr.Row():
|
437 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
|
|
455 |
elem_classes=["scrollable-textarea"]
|
456 |
)
|
457 |
|
|
|
458 |
with gr.Tab("π PDF Analysis"):
|
459 |
with gr.Row():
|
460 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
|
|
482 |
elem_classes=["scrollable-textarea"]
|
483 |
)
|
484 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
with gr.Tab("π€ Voice Processing"):
|
486 |
with gr.Row():
|
487 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
|
|
509 |
elem_classes=["scrollable-textarea"]
|
510 |
)
|
511 |
|
|
|
512 |
with gr.Tab("β‘ Code Executor"):
|
513 |
with gr.Row():
|
514 |
with gr.Column(scale=1, elem_classes=["input-card"]):
|
|
|
544 |
elem_classes=["scrollable-textarea"]
|
545 |
)
|
546 |
|
|
|
547 |
with gr.Tab("π§ Memory & History"):
|
548 |
with gr.Column(elem_classes=["input-card"]):
|
549 |
gr.HTML("<h3 style='margin-top: 0;'>Conversation Memory</h3>")
|
|
|
570 |
elem_classes=["scrollable-textarea"]
|
571 |
)
|
572 |
|
|
|
573 |
def update_api_status(api_key):
|
574 |
message, status = initialize_api_key(api_key)
|
575 |
if status == "success":
|
|
|
595 |
outputs=[pdf_output]
|
596 |
)
|
597 |
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
audio_btn.click(
|
599 |
fn=process_audio_input,
|
600 |
inputs=[audio_file, audio_question, api_key_state],
|
|
|
617 |
outputs=[history_output]
|
618 |
)
|
619 |
|
|
|
620 |
gr.HTML("""
|
621 |
<div style="text-align: center; padding: 25px; margin-top: 30px; border-top: 2px solid #e9ecef; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); border-radius: 10px;">
|
622 |
<p style="color: #495057; font-size: 1.1em; margin: 0;">
|
|
|
630 |
|
631 |
return app
|
632 |
|
|
|
633 |
if __name__ == "__main__":
|
634 |
app = create_nexus_interface()
|
635 |
app.launch(
|