Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import List, Dict, Any, Optional, Tuple
|
7 |
+
import tempfile
|
8 |
+
import base64
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
# Core dependencies
|
12 |
+
try:
|
13 |
+
from together import Together
|
14 |
+
import PyPDF2
|
15 |
+
from PIL import Image
|
16 |
+
import speech_recognition as sr
|
17 |
+
import io
|
18 |
+
import subprocess
|
19 |
+
import sys
|
20 |
+
except ImportError as e:
|
21 |
+
print(f"Missing dependency: {e}")
|
22 |
+
print("Install with: pip install together PyPDF2 pillow speechrecognition pyaudio")
|
23 |
+
sys.exit(1)
|
24 |
+
|
25 |
+
class ConversationMemory:
|
26 |
+
"""Manages conversation context and memory across sessions"""
|
27 |
+
|
28 |
+
def __init__(self):
|
29 |
+
self.conversations = []
|
30 |
+
self.context_graph = {}
|
31 |
+
self.session_data = {}
|
32 |
+
|
33 |
+
def add_interaction(self, input_type: str, content: str, response: str, metadata: Dict = None):
|
34 |
+
interaction = {
|
35 |
+
"timestamp": datetime.now().isoformat(),
|
36 |
+
"input_type": input_type,
|
37 |
+
"content": content[:500] + "..." if len(content) > 500 else content, # Truncate for memory
|
38 |
+
"response": response[:1000] + "..." if len(response) > 1000 else response,
|
39 |
+
"metadata": metadata or {}
|
40 |
+
}
|
41 |
+
self.conversations.append(interaction)
|
42 |
+
|
43 |
+
def get_relevant_context(self, query: str, limit: int = 3) -> List[Dict]:
|
44 |
+
# Simple relevance scoring - in production, use embeddings
|
45 |
+
relevant = []
|
46 |
+
query_lower = query.lower()
|
47 |
+
|
48 |
+
for conv in reversed(self.conversations[-10:]): # Check last 10 interactions
|
49 |
+
score = 0
|
50 |
+
content_lower = conv["content"].lower()
|
51 |
+
response_lower = conv["response"].lower()
|
52 |
+
|
53 |
+
# Simple keyword matching
|
54 |
+
for word in query_lower.split():
|
55 |
+
if len(word) > 3: # Skip short words
|
56 |
+
if word in content_lower or word in response_lower:
|
57 |
+
score += 1
|
58 |
+
|
59 |
+
if score > 0:
|
60 |
+
relevant.append((score, conv))
|
61 |
+
|
62 |
+
# Sort by relevance and return top results
|
63 |
+
relevant.sort(key=lambda x: x[0], reverse=True)
|
64 |
+
return [conv for score, conv in relevant[:limit]]
|
65 |
+
|
66 |
+
class NexusAI:
|
67 |
+
"""Main AI processing class"""
|
68 |
+
|
69 |
+
def __init__(self, api_key: str = None):
|
70 |
+
self.api_key = api_key
|
71 |
+
self.client = None
|
72 |
+
self.memory = ConversationMemory()
|
73 |
+
|
74 |
+
if api_key:
|
75 |
+
self.initialize_client(api_key)
|
76 |
+
|
77 |
+
def initialize_client(self, api_key: str):
|
78 |
+
"""Initialize Together AI client"""
|
79 |
+
try:
|
80 |
+
self.client = Together(api_key=api_key)
|
81 |
+
self.api_key = api_key
|
82 |
+
return True, "API key initialized successfully!"
|
83 |
+
except Exception as e:
|
84 |
+
return False, f"Failed to initialize API key: {str(e)}"
|
85 |
+
|
86 |
+
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
87 |
+
"""Extract text from PDF file"""
|
88 |
+
try:
|
89 |
+
with open(pdf_path, 'rb') as file:
|
90 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
91 |
+
text = ""
|
92 |
+
for page in pdf_reader.pages:
|
93 |
+
text += page.extract_text() + "\n"
|
94 |
+
return text.strip()
|
95 |
+
except Exception as e:
|
96 |
+
return f"Error reading PDF: {str(e)}"
|
97 |
+
|
98 |
+
def analyze_image(self, image_path: str) -> str:
|
99 |
+
"""Analyze image and return description"""
|
100 |
+
try:
|
101 |
+
with Image.open(image_path) as img:
|
102 |
+
# Basic image analysis - in production, use vision models
|
103 |
+
width, height = img.size
|
104 |
+
mode = img.mode
|
105 |
+
format_type = img.format
|
106 |
+
|
107 |
+
description = f"Image Analysis:\n"
|
108 |
+
description += f"- Dimensions: {width}x{height} pixels\n"
|
109 |
+
description += f"- Color mode: {mode}\n"
|
110 |
+
description += f"- Format: {format_type}\n"
|
111 |
+
|
112 |
+
# Simple color analysis
|
113 |
+
if mode == "RGB":
|
114 |
+
# Get dominant colors (simplified)
|
115 |
+
img_small = img.resize((50, 50))
|
116 |
+
colors = img_small.getcolors(2500)
|
117 |
+
if colors:
|
118 |
+
dominant_color = max(colors, key=lambda x: x[0])[1]
|
119 |
+
description += f"- Dominant color (RGB): {dominant_color}\n"
|
120 |
+
|
121 |
+
return description
|
122 |
+
except Exception as e:
|
123 |
+
return f"Error analyzing image: {str(e)}"
|
124 |
+
|
125 |
+
def transcribe_audio(self, audio_path: str) -> str:
|
126 |
+
"""Transcribe audio to text"""
|
127 |
+
try:
|
128 |
+
r = sr.Recognizer()
|
129 |
+
with sr.AudioFile(audio_path) as source:
|
130 |
+
audio_data = r.record(source)
|
131 |
+
text = r.recognize_google(audio_data)
|
132 |
+
return text
|
133 |
+
except Exception as e:
|
134 |
+
return f"Error transcribing audio: {str(e)}"
|
135 |
+
|
136 |
+
def execute_code(self, code: str, language: str = "python") -> str:
|
137 |
+
"""Execute code safely (basic implementation)"""
|
138 |
+
try:
|
139 |
+
if language.lower() == "python":
|
140 |
+
# Create a temporary file
|
141 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
|
142 |
+
f.write(code)
|
143 |
+
temp_file = f.name
|
144 |
+
|
145 |
+
# Execute with timeout
|
146 |
+
try:
|
147 |
+
result = subprocess.run([sys.executable, temp_file],
|
148 |
+
capture_output=True, text=True, timeout=10)
|
149 |
+
output = result.stdout
|
150 |
+
if result.stderr:
|
151 |
+
output += f"\nErrors:\n{result.stderr}"
|
152 |
+
return output
|
153 |
+
except subprocess.TimeoutExpired:
|
154 |
+
return "Code execution timed out (10s limit)"
|
155 |
+
finally:
|
156 |
+
os.unlink(temp_file)
|
157 |
+
else:
|
158 |
+
return f"Language '{language}' not supported yet. Only Python is available."
|
159 |
+
except Exception as e:
|
160 |
+
return f"Error executing code: {str(e)}"
|
161 |
+
|
162 |
+
def build_context_messages(self, user_input: str, input_type: str, extracted_content: str = "") -> List[Dict]:
|
163 |
+
"""Build context messages for the AI model"""
|
164 |
+
messages = []
|
165 |
+
|
166 |
+
# Add system message
|
167 |
+
system_msg = """You are Nexus AI, a creative multimodal assistant that helps users across different types of content.
|
168 |
+
You excel at connecting insights across text, documents, images, voice, and code. Always provide helpful,
|
169 |
+
contextual responses that build on previous interactions when relevant."""
|
170 |
+
|
171 |
+
messages.append({"role": "system", "content": system_msg})
|
172 |
+
|
173 |
+
# Add relevant conversation history
|
174 |
+
relevant_context = self.memory.get_relevant_context(user_input)
|
175 |
+
for context in relevant_context:
|
176 |
+
messages.append({
|
177 |
+
"role": "assistant",
|
178 |
+
"content": f"[Previous {context['input_type']} interaction] {context['response'][:200]}..."
|
179 |
+
})
|
180 |
+
|
181 |
+
# Build current user message
|
182 |
+
current_content = f"Input Type: {input_type}\n\n"
|
183 |
+
|
184 |
+
if extracted_content:
|
185 |
+
current_content += f"Extracted Content:\n{extracted_content[:2000]}...\n\n" if len(extracted_content) > 2000 else f"Extracted Content:\n{extracted_content}\n\n"
|
186 |
+
|
187 |
+
current_content += f"User Query: {user_input}"
|
188 |
+
|
189 |
+
messages.append({"role": "user", "content": current_content})
|
190 |
+
|
191 |
+
return messages
|
192 |
+
|
193 |
+
def generate_response(self, user_input: str, input_type: str, extracted_content: str = "") -> str:
|
194 |
+
"""Generate AI response using AFM-4.5B model"""
|
195 |
+
if not self.client:
|
196 |
+
return "❌ Please initialize your Together AI API key first!"
|
197 |
+
|
198 |
+
try:
|
199 |
+
messages = self.build_context_messages(user_input, input_type, extracted_content)
|
200 |
+
|
201 |
+
response = self.client.chat.completions.create(
|
202 |
+
model="arcee-ai/AFM-4.5B-Preview",
|
203 |
+
messages=messages,
|
204 |
+
max_tokens=1024,
|
205 |
+
temperature=0.7
|
206 |
+
)
|
207 |
+
|
208 |
+
ai_response = response.choices[0].message.content
|
209 |
+
|
210 |
+
# Store interaction in memory
|
211 |
+
self.memory.add_interaction(
|
212 |
+
input_type=input_type,
|
213 |
+
content=user_input + ("\n" + extracted_content if extracted_content else ""),
|
214 |
+
response=ai_response
|
215 |
+
)
|
216 |
+
|
217 |
+
return ai_response
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
return f"❌ Error generating response: {str(e)}"
|
221 |
+
|
222 |
+
# Initialize the AI assistant
|
223 |
+
nexus_ai = NexusAI()
|
224 |
+
|
225 |
+
def initialize_api_key(api_key: str) -> Tuple[str, str]:
|
226 |
+
"""Initialize the API key"""
|
227 |
+
if not api_key.strip():
|
228 |
+
return "❌ Please enter a valid API key", "error"
|
229 |
+
|
230 |
+
success, message = nexus_ai.initialize_client(api_key.strip())
|
231 |
+
status = "success" if success else "error"
|
232 |
+
return message, status
|
233 |
+
|
234 |
+
def process_text_input(user_input: str, api_key_status: str) -> str:
|
235 |
+
"""Process text input"""
|
236 |
+
if api_key_status != "success":
|
237 |
+
return "❌ Please initialize your Together AI API key first!"
|
238 |
+
|
239 |
+
if not user_input.strip():
|
240 |
+
return "Please enter some text to get started!"
|
241 |
+
|
242 |
+
return nexus_ai.generate_response(user_input, "text")
|
243 |
+
|
244 |
+
def process_pdf_input(pdf_file, user_question: str, api_key_status: str) -> str:
|
245 |
+
"""Process PDF input with question"""
|
246 |
+
if api_key_status != "success":
|
247 |
+
return "❌ Please initialize your Together AI API key first!"
|
248 |
+
|
249 |
+
if pdf_file is None:
|
250 |
+
return "Please upload a PDF file first!"
|
251 |
+
|
252 |
+
# Extract text from PDF
|
253 |
+
extracted_text = nexus_ai.extract_text_from_pdf(pdf_file.name)
|
254 |
+
|
255 |
+
if user_question.strip():
|
256 |
+
return nexus_ai.generate_response(user_question, "pdf", extracted_text)
|
257 |
+
else:
|
258 |
+
return nexus_ai.generate_response("Please summarize this document", "pdf", extracted_text)
|
259 |
+
|
260 |
+
def process_image_input(image_file, user_question: str, api_key_status: str) -> str:
|
261 |
+
"""Process image input with question"""
|
262 |
+
if api_key_status != "success":
|
263 |
+
return "❌ Please initialize your Together AI API key first!"
|
264 |
+
|
265 |
+
if image_file is None:
|
266 |
+
return "Please upload an image file first!"
|
267 |
+
|
268 |
+
# Analyze image
|
269 |
+
image_analysis = nexus_ai.analyze_image(image_file.name)
|
270 |
+
|
271 |
+
if user_question.strip():
|
272 |
+
return nexus_ai.generate_response(user_question, "image", image_analysis)
|
273 |
+
else:
|
274 |
+
return nexus_ai.generate_response("What can you tell me about this image?", "image", image_analysis)
|
275 |
+
|
276 |
+
def process_audio_input(audio_file, user_question: str, api_key_status: str) -> str:
|
277 |
+
"""Process audio input with question"""
|
278 |
+
if api_key_status != "success":
|
279 |
+
return "❌ Please initialize your Together AI API key first!"
|
280 |
+
|
281 |
+
if audio_file is None:
|
282 |
+
return "Please upload an audio file first!"
|
283 |
+
|
284 |
+
# Transcribe audio
|
285 |
+
transcribed_text = nexus_ai.transcribe_audio(audio_file.name)
|
286 |
+
|
287 |
+
if user_question.strip():
|
288 |
+
combined_input = f"Transcribed audio: '{transcribed_text}'\n\nUser question: {user_question}"
|
289 |
+
return nexus_ai.generate_response(combined_input, "audio", transcribed_text)
|
290 |
+
else:
|
291 |
+
return nexus_ai.generate_response("Please help me with this audio content", "audio", transcribed_text)
|
292 |
+
|
293 |
+
def process_code_input(code_input: str, language: str, action: str, api_key_status: str) -> str:
|
294 |
+
"""Process code input"""
|
295 |
+
if api_key_status != "success":
|
296 |
+
return "❌ Please initialize your Together AI API key first!"
|
297 |
+
|
298 |
+
if not code_input.strip():
|
299 |
+
return "Please enter some code first!"
|
300 |
+
|
301 |
+
result = ""
|
302 |
+
|
303 |
+
if action == "Execute Code":
|
304 |
+
execution_result = nexus_ai.execute_code(code_input, language)
|
305 |
+
result = f"**Code Execution Result:**\n```\n{execution_result}\n```\n\n"
|
306 |
+
|
307 |
+
ai_response = nexus_ai.generate_response(
|
308 |
+
f"Please analyze this {language} code and provide insights:\n\n{code_input}",
|
309 |
+
"code",
|
310 |
+
result
|
311 |
+
)
|
312 |
+
|
313 |
+
return result + ai_response
|
314 |
+
|
315 |
+
def show_conversation_history() -> str:
|
316 |
+
"""Show recent conversation history"""
|
317 |
+
if not nexus_ai.memory.conversations:
|
318 |
+
return "No conversation history yet. Start chatting to build your knowledge base!"
|
319 |
+
|
320 |
+
history = "## 📚 Recent Conversation History\n\n"
|
321 |
+
for i, conv in enumerate(nexus_ai.memory.conversations[-5:], 1): # Show last 5
|
322 |
+
timestamp = datetime.fromisoformat(conv["timestamp"]).strftime("%H:%M:%S")
|
323 |
+
history += f"**{i}. [{conv['input_type'].upper()}] {timestamp}**\n"
|
324 |
+
history += f"Input: {conv['content'][:100]}{'...' if len(conv['content']) > 100 else ''}\n"
|
325 |
+
history += f"Response: {conv['response'][:150]}{'...' if len(conv['response']) > 150 else ''}\n\n"
|
326 |
+
|
327 |
+
return history
|
328 |
+
|
329 |
+
# Create the Gradio interface
|
330 |
+
def create_nexus_interface():
|
331 |
+
with gr.Blocks(
|
332 |
+
theme=gr.themes.Soft(),
|
333 |
+
title="Nexus AI Assistant",
|
334 |
+
css="""
|
335 |
+
.gradio-container {
|
336 |
+
max-width: 1200px !important;
|
337 |
+
}
|
338 |
+
.api-key-box {
|
339 |
+
border: 2px solid #e1e5e9;
|
340 |
+
border-radius: 8px;
|
341 |
+
padding: 15px;
|
342 |
+
margin-bottom: 20px;
|
343 |
+
background-color: #f8f9fa;
|
344 |
+
}
|
345 |
+
"""
|
346 |
+
) as app:
|
347 |
+
|
348 |
+
# Header
|
349 |
+
gr.HTML("""
|
350 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
|
351 |
+
<h1 style="color: white; margin: 0; font-size: 2.5em; font-weight: bold;">🚀 Nexus AI Assistant</h1>
|
352 |
+
<p style="color: white; margin: 10px 0 0 0; font-size: 1.2em;">Creative Multimodal AI Powered by AFM-4.5B</p>
|
353 |
+
</div>
|
354 |
+
""")
|
355 |
+
|
356 |
+
# API Key Section
|
357 |
+
with gr.Group(elem_classes=["api-key-box"]):
|
358 |
+
gr.HTML("<h3>🔑 API Configuration</h3>")
|
359 |
+
with gr.Row():
|
360 |
+
api_key_input = gr.Textbox(
|
361 |
+
label="Together AI API Key",
|
362 |
+
type="password",
|
363 |
+
placeholder="Enter your Together AI API key here...",
|
364 |
+
scale=3
|
365 |
+
)
|
366 |
+
api_key_btn = gr.Button("Initialize API Key", variant="primary", scale=1)
|
367 |
+
|
368 |
+
api_key_status = gr.Textbox(
|
369 |
+
label="Status",
|
370 |
+
interactive=False,
|
371 |
+
value="Please enter your API key to get started"
|
372 |
+
)
|
373 |
+
|
374 |
+
# Hidden state to track API key status
|
375 |
+
api_key_state = gr.State(value="not_initialized")
|
376 |
+
|
377 |
+
# Main Interface Tabs
|
378 |
+
with gr.Tabs():
|
379 |
+
|
380 |
+
# Text Chat Tab
|
381 |
+
with gr.Tab("💬 Text Chat"):
|
382 |
+
with gr.Column():
|
383 |
+
text_input = gr.Textbox(
|
384 |
+
label="Your Message",
|
385 |
+
placeholder="Ask me anything! I can help with creative tasks, analysis, problem-solving...",
|
386 |
+
lines=3
|
387 |
+
)
|
388 |
+
text_btn = gr.Button("Send Message", variant="primary")
|
389 |
+
text_output = gr.Textbox(
|
390 |
+
label="Nexus AI Response",
|
391 |
+
lines=8,
|
392 |
+
interactive=False
|
393 |
+
)
|
394 |
+
|
395 |
+
# PDF Analysis Tab
|
396 |
+
with gr.Tab("📄 PDF Analysis"):
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column(scale=1):
|
399 |
+
pdf_file = gr.File(
|
400 |
+
label="Upload PDF",
|
401 |
+
file_types=[".pdf"]
|
402 |
+
)
|
403 |
+
pdf_question = gr.Textbox(
|
404 |
+
label="Question about PDF (optional)",
|
405 |
+
placeholder="What would you like to know about this document?",
|
406 |
+
lines=2
|
407 |
+
)
|
408 |
+
pdf_btn = gr.Button("Analyze PDF", variant="primary")
|
409 |
+
|
410 |
+
with gr.Column(scale=1):
|
411 |
+
pdf_output = gr.Textbox(
|
412 |
+
label="Analysis Result",
|
413 |
+
lines=12,
|
414 |
+
interactive=False
|
415 |
+
)
|
416 |
+
|
417 |
+
# Image Analysis Tab
|
418 |
+
with gr.Tab("🖼️ Image Analysis"):
|
419 |
+
with gr.Row():
|
420 |
+
with gr.Column(scale=1):
|
421 |
+
image_file = gr.Image(
|
422 |
+
label="Upload Image",
|
423 |
+
type="filepath"
|
424 |
+
)
|
425 |
+
image_question = gr.Textbox(
|
426 |
+
label="Question about Image (optional)",
|
427 |
+
placeholder="What would you like to know about this image?",
|
428 |
+
lines=2
|
429 |
+
)
|
430 |
+
image_btn = gr.Button("Analyze Image", variant="primary")
|
431 |
+
|
432 |
+
with gr.Column(scale=1):
|
433 |
+
image_output = gr.Textbox(
|
434 |
+
label="Analysis Result",
|
435 |
+
lines=12,
|
436 |
+
interactive=False
|
437 |
+
)
|
438 |
+
|
439 |
+
# Voice Processing Tab
|
440 |
+
with gr.Tab("🎤 Voice Processing"):
|
441 |
+
with gr.Row():
|
442 |
+
with gr.Column(scale=1):
|
443 |
+
audio_file = gr.Audio(
|
444 |
+
label="Upload Audio",
|
445 |
+
type="filepath"
|
446 |
+
)
|
447 |
+
audio_question = gr.Textbox(
|
448 |
+
label="Additional Question (optional)",
|
449 |
+
placeholder="Any specific question about the audio content?",
|
450 |
+
lines=2
|
451 |
+
)
|
452 |
+
audio_btn = gr.Button("Process Audio", variant="primary")
|
453 |
+
|
454 |
+
with gr.Column(scale=1):
|
455 |
+
audio_output = gr.Textbox(
|
456 |
+
label="Processing Result",
|
457 |
+
lines=12,
|
458 |
+
interactive=False
|
459 |
+
)
|
460 |
+
|
461 |
+
# Code Executor Tab
|
462 |
+
with gr.Tab("⚡ Code Executor"):
|
463 |
+
with gr.Row():
|
464 |
+
with gr.Column(scale=1):
|
465 |
+
code_input = gr.Code(
|
466 |
+
label="Code Input",
|
467 |
+
language="python",
|
468 |
+
lines=10
|
469 |
+
)
|
470 |
+
with gr.Row():
|
471 |
+
language_select = gr.Dropdown(
|
472 |
+
choices=["python", "javascript", "java", "cpp"],
|
473 |
+
value="python",
|
474 |
+
label="Language",
|
475 |
+
scale=1
|
476 |
+
)
|
477 |
+
code_action = gr.Radio(
|
478 |
+
choices=["Execute Code", "Analyze Only"],
|
479 |
+
value="Execute Code",
|
480 |
+
label="Action",
|
481 |
+
scale=1
|
482 |
+
)
|
483 |
+
code_btn = gr.Button("Process Code", variant="primary")
|
484 |
+
|
485 |
+
with gr.Column(scale=1):
|
486 |
+
code_output = gr.Textbox(
|
487 |
+
label="Result & Analysis",
|
488 |
+
lines=15,
|
489 |
+
interactive=False
|
490 |
+
)
|
491 |
+
|
492 |
+
# Memory & History Tab
|
493 |
+
with gr.Tab("🧠 Memory & History"):
|
494 |
+
with gr.Column():
|
495 |
+
gr.HTML("<h3>Conversation Memory</h3>")
|
496 |
+
gr.HTML("<p>Nexus AI remembers your interactions and can connect insights across different input types.</p>")
|
497 |
+
|
498 |
+
history_btn = gr.Button("Show Recent History", variant="secondary")
|
499 |
+
history_output = gr.Textbox(
|
500 |
+
label="Conversation History",
|
501 |
+
lines=15,
|
502 |
+
interactive=False
|
503 |
+
)
|
504 |
+
|
505 |
+
# Event handlers
|
506 |
+
api_key_btn.click(
|
507 |
+
fn=initialize_api_key,
|
508 |
+
inputs=[api_key_input],
|
509 |
+
outputs=[api_key_status, api_key_state]
|
510 |
+
)
|
511 |
+
|
512 |
+
text_btn.click(
|
513 |
+
fn=process_text_input,
|
514 |
+
inputs=[text_input, api_key_state],
|
515 |
+
outputs=[text_output]
|
516 |
+
)
|
517 |
+
|
518 |
+
pdf_btn.click(
|
519 |
+
fn=process_pdf_input,
|
520 |
+
inputs=[pdf_file, pdf_question, api_key_state],
|
521 |
+
outputs=[pdf_output]
|
522 |
+
)
|
523 |
+
|
524 |
+
image_btn.click(
|
525 |
+
fn=process_image_input,
|
526 |
+
inputs=[image_file, image_question, api_key_state],
|
527 |
+
outputs=[image_output]
|
528 |
+
)
|
529 |
+
|
530 |
+
audio_btn.click(
|
531 |
+
fn=process_audio_input,
|
532 |
+
inputs=[audio_file, audio_question, api_key_state],
|
533 |
+
outputs=[audio_output]
|
534 |
+
)
|
535 |
+
|
536 |
+
code_btn.click(
|
537 |
+
fn=process_code_input,
|
538 |
+
inputs=[code_input, language_select, code_action, api_key_state],
|
539 |
+
outputs=[code_output]
|
540 |
+
)
|
541 |
+
|
542 |
+
history_btn.click(
|
543 |
+
fn=show_conversation_history,
|
544 |
+
outputs=[history_output]
|
545 |
+
)
|
546 |
+
|
547 |
+
# Footer
|
548 |
+
gr.HTML("""
|
549 |
+
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #e1e5e9;">
|
550 |
+
<p style="color: #666;">🚀 <strong>Nexus AI Assistant</strong> - Powered by AFM-4.5B | Built with ❤️ using Gradio</p>
|
551 |
+
<p style="color: #888; font-size: 0.9em;">Multi-modal AI assistant for creative and analytical tasks</p>
|
552 |
+
</div>
|
553 |
+
""")
|
554 |
+
|
555 |
+
return app
|
556 |
+
|
557 |
+
# Launch the application
|
558 |
+
if __name__ == "__main__":
|
559 |
+
app = create_nexus_interface()
|
560 |
+
app.launch(
|
561 |
+
server_name="0.0.0.0",
|
562 |
+
server_port=7860,
|
563 |
+
share=True,
|
564 |
+
debug=True
|
565 |
+
)
|