|
from open_webui.utils.task import prompt_template |
|
from open_webui.utils.misc import ( |
|
add_or_update_system_message, |
|
) |
|
|
|
from typing import Callable, Optional |
|
|
|
|
|
|
|
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict: |
|
system = params.get("system", None) |
|
if not system: |
|
return form_data |
|
|
|
if user: |
|
template_params = { |
|
"user_name": user.name, |
|
"user_location": user.info.get("location") if user.info else None, |
|
} |
|
else: |
|
template_params = {} |
|
system = prompt_template(system, **template_params) |
|
form_data["messages"] = add_or_update_system_message( |
|
system, form_data.get("messages", []) |
|
) |
|
return form_data |
|
|
|
|
|
|
|
def apply_model_params_to_body( |
|
params: dict, form_data: dict, mappings: dict[str, Callable] |
|
) -> dict: |
|
if not params: |
|
return form_data |
|
|
|
for key, cast_func in mappings.items(): |
|
if (value := params.get(key)) is not None: |
|
form_data[key] = cast_func(value) |
|
|
|
return form_data |
|
|
|
|
|
|
|
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict: |
|
mappings = { |
|
"temperature": float, |
|
"top_p": float, |
|
"max_tokens": int, |
|
"frequency_penalty": float, |
|
"seed": lambda x: x, |
|
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x], |
|
} |
|
return apply_model_params_to_body(params, form_data, mappings) |
|
|
|
|
|
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict: |
|
opts = [ |
|
"temperature", |
|
"top_p", |
|
"seed", |
|
"mirostat", |
|
"mirostat_eta", |
|
"mirostat_tau", |
|
"num_ctx", |
|
"num_batch", |
|
"num_keep", |
|
"repeat_last_n", |
|
"tfs_z", |
|
"top_k", |
|
"min_p", |
|
"use_mmap", |
|
"use_mlock", |
|
"num_thread", |
|
"num_gpu", |
|
] |
|
mappings = {i: lambda x: x for i in opts} |
|
form_data = apply_model_params_to_body(params, form_data, mappings) |
|
|
|
name_differences = { |
|
"max_tokens": "num_predict", |
|
"frequency_penalty": "repeat_penalty", |
|
} |
|
|
|
for key, value in name_differences.items(): |
|
if (param := params.get(key, None)) is not None: |
|
form_data[value] = param |
|
|
|
return form_data |
|
|
|
|
|
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]: |
|
ollama_messages = [] |
|
|
|
for message in messages: |
|
|
|
new_message = {"role": message["role"]} |
|
|
|
content = message.get("content", []) |
|
|
|
|
|
if isinstance(content, str): |
|
|
|
new_message["content"] = content |
|
else: |
|
|
|
content_text = "" |
|
images = [] |
|
|
|
|
|
for item in content: |
|
|
|
if item.get("type") == "text": |
|
content_text += item.get("text", "") |
|
|
|
|
|
elif item.get("type") == "image_url": |
|
img_url = item.get("image_url", {}).get("url", "") |
|
if img_url: |
|
|
|
if img_url.startswith("data:"): |
|
img_url = img_url.split(",")[-1] |
|
images.append(img_url) |
|
|
|
|
|
if content_text: |
|
new_message["content"] = content_text.strip() |
|
|
|
|
|
if images: |
|
new_message["images"] = images |
|
|
|
|
|
ollama_messages.append(new_message) |
|
|
|
return ollama_messages |
|
|
|
|
|
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict: |
|
""" |
|
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions. |
|
|
|
Args: |
|
openai_payload (dict): The payload originally designed for OpenAI API usage. |
|
|
|
Returns: |
|
dict: A modified payload compatible with the Ollama API. |
|
""" |
|
ollama_payload = {} |
|
|
|
|
|
ollama_payload["model"] = openai_payload.get("model") |
|
ollama_payload["messages"] = convert_messages_openai_to_ollama( |
|
openai_payload.get("messages") |
|
) |
|
ollama_payload["stream"] = openai_payload.get("stream", False) |
|
|
|
|
|
ollama_options = {} |
|
|
|
|
|
for param in ["temperature", "top_p", "seed"]: |
|
if param in openai_payload: |
|
ollama_options[param] = openai_payload[param] |
|
|
|
|
|
if "max_completion_tokens" in openai_payload: |
|
ollama_options["num_predict"] = openai_payload["max_completion_tokens"] |
|
elif "max_tokens" in openai_payload: |
|
ollama_options["num_predict"] = openai_payload["max_tokens"] |
|
|
|
|
|
if "frequency_penalty" in openai_payload: |
|
ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"] |
|
|
|
if "presence_penalty" in openai_payload and "penalty" not in ollama_options: |
|
|
|
ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"] |
|
|
|
|
|
if ollama_options: |
|
ollama_payload["options"] = ollama_options |
|
|
|
return ollama_payload |
|
|