|
import logging |
|
import os |
|
import uuid |
|
from typing import Optional, Union |
|
|
|
import asyncio |
|
import requests |
|
|
|
from huggingface_hub import snapshot_download |
|
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever |
|
from langchain_community.retrievers import BM25Retriever |
|
from langchain_core.documents import Document |
|
|
|
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT |
|
from open_webui.utils.misc import get_last_user_message |
|
|
|
from open_webui.env import SRC_LOG_LEVELS |
|
|
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["RAG"]) |
|
|
|
|
|
from typing import Any |
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun |
|
from langchain_core.retrievers import BaseRetriever |
|
|
|
|
|
class VectorSearchRetriever(BaseRetriever): |
|
collection_name: Any |
|
embedding_function: Any |
|
top_k: int |
|
|
|
def _get_relevant_documents( |
|
self, |
|
query: str, |
|
*, |
|
run_manager: CallbackManagerForRetrieverRun, |
|
) -> list[Document]: |
|
result = VECTOR_DB_CLIENT.search( |
|
collection_name=self.collection_name, |
|
vectors=[self.embedding_function(query)], |
|
limit=self.top_k, |
|
) |
|
|
|
ids = result.ids[0] |
|
metadatas = result.metadatas[0] |
|
documents = result.documents[0] |
|
|
|
results = [] |
|
for idx in range(len(ids)): |
|
results.append( |
|
Document( |
|
metadata=metadatas[idx], |
|
page_content=documents[idx], |
|
) |
|
) |
|
return results |
|
|
|
|
|
def query_doc( |
|
collection_name: str, |
|
query_embedding: list[float], |
|
k: int, |
|
): |
|
try: |
|
result = VECTOR_DB_CLIENT.search( |
|
collection_name=collection_name, |
|
vectors=[query_embedding], |
|
limit=k, |
|
) |
|
|
|
log.info(f"query_doc:result {result.ids} {result.metadatas}") |
|
return result |
|
except Exception as e: |
|
print(e) |
|
raise e |
|
|
|
|
|
def query_doc_with_hybrid_search( |
|
collection_name: str, |
|
query: str, |
|
embedding_function, |
|
k: int, |
|
reranking_function, |
|
r: float, |
|
) -> dict: |
|
try: |
|
result = VECTOR_DB_CLIENT.get(collection_name=collection_name) |
|
|
|
bm25_retriever = BM25Retriever.from_texts( |
|
texts=result.documents[0], |
|
metadatas=result.metadatas[0], |
|
) |
|
bm25_retriever.k = k |
|
|
|
vector_search_retriever = VectorSearchRetriever( |
|
collection_name=collection_name, |
|
embedding_function=embedding_function, |
|
top_k=k, |
|
) |
|
|
|
ensemble_retriever = EnsembleRetriever( |
|
retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5] |
|
) |
|
compressor = RerankCompressor( |
|
embedding_function=embedding_function, |
|
top_n=k, |
|
reranking_function=reranking_function, |
|
r_score=r, |
|
) |
|
|
|
compression_retriever = ContextualCompressionRetriever( |
|
base_compressor=compressor, base_retriever=ensemble_retriever |
|
) |
|
|
|
result = compression_retriever.invoke(query) |
|
result = { |
|
"distances": [[d.metadata.get("score") for d in result]], |
|
"documents": [[d.page_content for d in result]], |
|
"metadatas": [[d.metadata for d in result]], |
|
} |
|
|
|
log.info( |
|
"query_doc_with_hybrid_search:result " |
|
+ f'{result["metadatas"]} {result["distances"]}' |
|
) |
|
return result |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def merge_and_sort_query_results( |
|
query_results: list[dict], k: int, reverse: bool = False |
|
) -> list[dict]: |
|
|
|
combined_distances = [] |
|
combined_documents = [] |
|
combined_metadatas = [] |
|
|
|
for data in query_results: |
|
combined_distances.extend(data["distances"][0]) |
|
combined_documents.extend(data["documents"][0]) |
|
combined_metadatas.extend(data["metadatas"][0]) |
|
|
|
|
|
combined = list(zip(combined_distances, combined_documents, combined_metadatas)) |
|
|
|
|
|
combined.sort(key=lambda x: x[0], reverse=reverse) |
|
|
|
|
|
if not combined: |
|
sorted_distances = [] |
|
sorted_documents = [] |
|
sorted_metadatas = [] |
|
else: |
|
|
|
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined) |
|
|
|
|
|
sorted_distances = list(sorted_distances)[:k] |
|
sorted_documents = list(sorted_documents)[:k] |
|
sorted_metadatas = list(sorted_metadatas)[:k] |
|
|
|
|
|
result = { |
|
"distances": [sorted_distances], |
|
"documents": [sorted_documents], |
|
"metadatas": [sorted_metadatas], |
|
} |
|
|
|
return result |
|
|
|
|
|
def query_collection( |
|
collection_names: list[str], |
|
queries: list[str], |
|
embedding_function, |
|
k: int, |
|
) -> dict: |
|
results = [] |
|
for query in queries: |
|
query_embedding = embedding_function(query) |
|
for collection_name in collection_names: |
|
if collection_name: |
|
try: |
|
result = query_doc( |
|
collection_name=collection_name, |
|
k=k, |
|
query_embedding=query_embedding, |
|
) |
|
if result is not None: |
|
results.append(result.model_dump()) |
|
except Exception as e: |
|
log.exception(f"Error when querying the collection: {e}") |
|
else: |
|
pass |
|
|
|
return merge_and_sort_query_results(results, k=k) |
|
|
|
|
|
def query_collection_with_hybrid_search( |
|
collection_names: list[str], |
|
queries: list[str], |
|
embedding_function, |
|
k: int, |
|
reranking_function, |
|
r: float, |
|
) -> dict: |
|
results = [] |
|
error = False |
|
for collection_name in collection_names: |
|
try: |
|
for query in queries: |
|
result = query_doc_with_hybrid_search( |
|
collection_name=collection_name, |
|
query=query, |
|
embedding_function=embedding_function, |
|
k=k, |
|
reranking_function=reranking_function, |
|
r=r, |
|
) |
|
results.append(result) |
|
except Exception as e: |
|
log.exception( |
|
"Error when querying the collection with " f"hybrid_search: {e}" |
|
) |
|
error = True |
|
|
|
if error: |
|
raise Exception( |
|
"Hybrid search failed for all collections. Using Non hybrid search as fallback." |
|
) |
|
|
|
return merge_and_sort_query_results(results, k=k, reverse=True) |
|
|
|
|
|
def get_embedding_function( |
|
embedding_engine, |
|
embedding_model, |
|
embedding_function, |
|
url, |
|
key, |
|
embedding_batch_size, |
|
): |
|
if embedding_engine == "": |
|
return lambda query: embedding_function.encode(query).tolist() |
|
elif embedding_engine in ["ollama", "openai"]: |
|
func = lambda query: generate_embeddings( |
|
engine=embedding_engine, |
|
model=embedding_model, |
|
text=query, |
|
url=url, |
|
key=key, |
|
) |
|
|
|
def generate_multiple(query, func): |
|
if isinstance(query, list): |
|
embeddings = [] |
|
for i in range(0, len(query), embedding_batch_size): |
|
embeddings.extend(func(query[i : i + embedding_batch_size])) |
|
return embeddings |
|
else: |
|
return func(query) |
|
|
|
return lambda query: generate_multiple(query, func) |
|
|
|
|
|
def get_sources_from_files( |
|
files, |
|
queries, |
|
embedding_function, |
|
k, |
|
reranking_function, |
|
r, |
|
hybrid_search, |
|
): |
|
log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}") |
|
|
|
extracted_collections = [] |
|
relevant_contexts = [] |
|
|
|
for file in files: |
|
if file.get("context") == "full": |
|
context = { |
|
"documents": [[file.get("file").get("data", {}).get("content")]], |
|
"metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]], |
|
} |
|
else: |
|
context = None |
|
|
|
collection_names = [] |
|
if file.get("type") == "collection": |
|
if file.get("legacy"): |
|
collection_names = file.get("collection_names", []) |
|
else: |
|
collection_names.append(file["id"]) |
|
elif file.get("collection_name"): |
|
collection_names.append(file["collection_name"]) |
|
elif file.get("id"): |
|
if file.get("legacy"): |
|
collection_names.append(f"{file['id']}") |
|
else: |
|
collection_names.append(f"file-{file['id']}") |
|
|
|
collection_names = set(collection_names).difference(extracted_collections) |
|
if not collection_names: |
|
log.debug(f"skipping {file} as it has already been extracted") |
|
continue |
|
|
|
try: |
|
context = None |
|
if file.get("type") == "text": |
|
context = file["content"] |
|
else: |
|
if hybrid_search: |
|
try: |
|
context = query_collection_with_hybrid_search( |
|
collection_names=collection_names, |
|
queries=queries, |
|
embedding_function=embedding_function, |
|
k=k, |
|
reranking_function=reranking_function, |
|
r=r, |
|
) |
|
except Exception as e: |
|
log.debug( |
|
"Error when using hybrid search, using" |
|
" non hybrid search as fallback." |
|
) |
|
|
|
if (not hybrid_search) or (context is None): |
|
context = query_collection( |
|
collection_names=collection_names, |
|
queries=queries, |
|
embedding_function=embedding_function, |
|
k=k, |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
extracted_collections.extend(collection_names) |
|
|
|
if context: |
|
if "data" in file: |
|
del file["data"] |
|
relevant_contexts.append({**context, "file": file}) |
|
|
|
sources = [] |
|
for context in relevant_contexts: |
|
try: |
|
if "documents" in context: |
|
if "metadatas" in context: |
|
source = { |
|
"source": context["file"], |
|
"document": context["documents"][0], |
|
"metadata": context["metadatas"][0], |
|
} |
|
if "distances" in context and context["distances"]: |
|
source["distances"] = context["distances"][0] |
|
|
|
sources.append(source) |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
return sources |
|
|
|
|
|
def get_model_path(model: str, update_model: bool = False): |
|
|
|
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") |
|
|
|
local_files_only = not update_model |
|
|
|
snapshot_kwargs = { |
|
"cache_dir": cache_dir, |
|
"local_files_only": local_files_only, |
|
} |
|
|
|
log.debug(f"model: {model}") |
|
log.debug(f"snapshot_kwargs: {snapshot_kwargs}") |
|
|
|
|
|
if ( |
|
os.path.exists(model) |
|
or ("\\" in model or model.count("/") > 1) |
|
and local_files_only |
|
): |
|
|
|
return model |
|
elif "/" not in model: |
|
|
|
model = "sentence-transformers" + "/" + model |
|
|
|
snapshot_kwargs["repo_id"] = model |
|
|
|
|
|
try: |
|
model_repo_path = snapshot_download(**snapshot_kwargs) |
|
log.debug(f"model_repo_path: {model_repo_path}") |
|
return model_repo_path |
|
except Exception as e: |
|
log.exception(f"Cannot determine model snapshot path: {e}") |
|
return model |
|
|
|
|
|
def generate_openai_batch_embeddings( |
|
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "" |
|
) -> Optional[list[list[float]]]: |
|
try: |
|
r = requests.post( |
|
f"{url}/embeddings", |
|
headers={ |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}", |
|
}, |
|
json={"input": texts, "model": model}, |
|
) |
|
r.raise_for_status() |
|
data = r.json() |
|
if "data" in data: |
|
return [elem["embedding"] for elem in data["data"]] |
|
else: |
|
raise "Something went wrong :/" |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
def generate_ollama_batch_embeddings( |
|
model: str, texts: list[str], url: str, key: str = "" |
|
) -> Optional[list[list[float]]]: |
|
try: |
|
r = requests.post( |
|
f"{url}/api/embed", |
|
headers={ |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {key}", |
|
}, |
|
json={"input": texts, "model": model}, |
|
) |
|
r.raise_for_status() |
|
data = r.json() |
|
|
|
if "embeddings" in data: |
|
return data["embeddings"] |
|
else: |
|
raise "Something went wrong :/" |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs): |
|
url = kwargs.get("url", "") |
|
key = kwargs.get("key", "") |
|
|
|
if engine == "ollama": |
|
if isinstance(text, list): |
|
embeddings = generate_ollama_batch_embeddings( |
|
**{"model": model, "texts": text, "url": url, "key": key} |
|
) |
|
else: |
|
embeddings = generate_ollama_batch_embeddings( |
|
**{"model": model, "texts": [text], "url": url, "key": key} |
|
) |
|
return embeddings[0] if isinstance(text, str) else embeddings |
|
elif engine == "openai": |
|
if isinstance(text, list): |
|
embeddings = generate_openai_batch_embeddings(model, text, url, key) |
|
else: |
|
embeddings = generate_openai_batch_embeddings(model, [text], url, key) |
|
|
|
return embeddings[0] if isinstance(text, str) else embeddings |
|
|
|
|
|
import operator |
|
from typing import Optional, Sequence |
|
|
|
from langchain_core.callbacks import Callbacks |
|
from langchain_core.documents import BaseDocumentCompressor, Document |
|
|
|
|
|
class RerankCompressor(BaseDocumentCompressor): |
|
embedding_function: Any |
|
top_n: int |
|
reranking_function: Any |
|
r_score: float |
|
|
|
class Config: |
|
extra = "forbid" |
|
arbitrary_types_allowed = True |
|
|
|
def compress_documents( |
|
self, |
|
documents: Sequence[Document], |
|
query: str, |
|
callbacks: Optional[Callbacks] = None, |
|
) -> Sequence[Document]: |
|
reranking = self.reranking_function is not None |
|
|
|
if reranking: |
|
scores = self.reranking_function.predict( |
|
[(query, doc.page_content) for doc in documents] |
|
) |
|
else: |
|
from sentence_transformers import util |
|
|
|
query_embedding = self.embedding_function(query) |
|
document_embedding = self.embedding_function( |
|
[doc.page_content for doc in documents] |
|
) |
|
scores = util.cos_sim(query_embedding, document_embedding)[0] |
|
|
|
docs_with_scores = list(zip(documents, scores.tolist())) |
|
if self.r_score: |
|
docs_with_scores = [ |
|
(d, s) for d, s in docs_with_scores if s >= self.r_score |
|
] |
|
|
|
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) |
|
final_results = [] |
|
for doc, doc_score in result[: self.top_n]: |
|
metadata = doc.metadata |
|
metadata["score"] = doc_score |
|
doc = Document( |
|
page_content=doc.page_content, |
|
metadata=metadata, |
|
) |
|
final_results.append(doc) |
|
return final_results |
|
|