Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from googleapiclient.discovery import build
|
4 |
+
import plotly.express as px
|
5 |
+
import base64
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.cluster import KMeans
|
9 |
+
import openai
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
|
12 |
+
def get_video_stats(api_key, video_id):
|
13 |
+
youtube = build("youtube", "v3", developerKey=api_key)
|
14 |
+
video_response = youtube.videos().list(
|
15 |
+
part="snippet,statistics",
|
16 |
+
id=video_id
|
17 |
+
).execute()
|
18 |
+
|
19 |
+
video = video_response["items"][0]
|
20 |
+
title = video["snippet"]["title"]
|
21 |
+
channel_id = video["snippet"]["channelId"]
|
22 |
+
publish_time = video["snippet"]["publishedAt"]
|
23 |
+
view_count = int(video["statistics"].get("viewCount", 0))
|
24 |
+
like_count = int(video["statistics"].get("likeCount", 0))
|
25 |
+
comment_count = int(video["statistics"].get("commentCount", 0))
|
26 |
+
|
27 |
+
return {
|
28 |
+
"Video ID": video_id,
|
29 |
+
"Title": title,
|
30 |
+
"publishedAt": publish_time,
|
31 |
+
"Channel ID": channel_id,
|
32 |
+
"View Count": view_count,
|
33 |
+
"Like Count": like_count,
|
34 |
+
"Comment Count": comment_count
|
35 |
+
}
|
36 |
+
|
37 |
+
def get_channel_stats(api_key, channel_id):
|
38 |
+
youtube = build("youtube", "v3", developerKey=api_key)
|
39 |
+
channel_response = youtube.channels().list(
|
40 |
+
part="statistics",
|
41 |
+
id=channel_id
|
42 |
+
).execute()
|
43 |
+
|
44 |
+
if channel_response["items"]:
|
45 |
+
channel = channel_response["items"][0]
|
46 |
+
subscriber_count = int(channel["statistics"]["subscriberCount"])
|
47 |
+
else:
|
48 |
+
subscriber_count = 0
|
49 |
+
|
50 |
+
return subscriber_count
|
51 |
+
|
52 |
+
def get_video_data(api_key, query, max_results, published_after, published_before):
|
53 |
+
youtube = build("youtube", "v3", developerKey=api_key)
|
54 |
+
video_ids = []
|
55 |
+
next_page_token = None
|
56 |
+
|
57 |
+
while len(video_ids) < max_results:
|
58 |
+
search_response = youtube.search().list(
|
59 |
+
q=query,
|
60 |
+
type="video",
|
61 |
+
part="id",
|
62 |
+
maxResults=50,
|
63 |
+
pageToken=next_page_token,
|
64 |
+
order="viewCount",
|
65 |
+
publishedAfter=published_after,
|
66 |
+
publishedBefore=published_before
|
67 |
+
).execute()
|
68 |
+
|
69 |
+
video_ids.extend([item["id"]["videoId"] for item in search_response["items"]])
|
70 |
+
next_page_token = search_response.get("nextPageToken")
|
71 |
+
|
72 |
+
if not next_page_token:
|
73 |
+
break
|
74 |
+
|
75 |
+
video_ids = video_ids[:max_results]
|
76 |
+
|
77 |
+
video_stats = []
|
78 |
+
for video_id in video_ids:
|
79 |
+
stats = get_video_stats(api_key, video_id)
|
80 |
+
channel_id = stats["Channel ID"]
|
81 |
+
subscriber_count = get_channel_stats(api_key, channel_id)
|
82 |
+
stats["Subscriber Count"] = subscriber_count
|
83 |
+
video_stats.append(stats)
|
84 |
+
|
85 |
+
video_stats_df = pd.DataFrame(video_stats)
|
86 |
+
return video_stats_df
|
87 |
+
|
88 |
+
def download_csv(df, filename):
|
89 |
+
csv = df.to_csv(index=False)
|
90 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
91 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}.csv">Download {filename} CSV</a>'
|
92 |
+
return href
|
93 |
+
|
94 |
+
def visualize_video_ranking(video_stats_df):
|
95 |
+
video_stats_df["Active_Index"] = video_stats_df["View Count"] / video_stats_df["Subscriber Count"]
|
96 |
+
|
97 |
+
csv_download_link = download_csv(video_stats_df, "video_stats")
|
98 |
+
|
99 |
+
fig = px.bar(video_stats_df, x="Video ID", y="Active_Index", color="View Count",
|
100 |
+
labels={"Video ID": "Video ID", "Active_Index": "Active_Index"},
|
101 |
+
title="Video Active Index")
|
102 |
+
fig.update_layout(height=500, width=500)
|
103 |
+
|
104 |
+
return video_stats_df, fig, csv_download_link
|
105 |
+
|
106 |
+
def analyze_titles(video_stats_df, openai_key, n_clusters=5):
|
107 |
+
titles = video_stats_df['Title'].tolist()
|
108 |
+
vectorizer = TfidfVectorizer()
|
109 |
+
tfidf_matrix = vectorizer.fit_transform(titles)
|
110 |
+
|
111 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
112 |
+
kmeans.fit(tfidf_matrix)
|
113 |
+
labels = kmeans.labels_
|
114 |
+
video_stats_df["Cluster"] = labels
|
115 |
+
|
116 |
+
cluster_summaries = []
|
117 |
+
for i in range(n_clusters):
|
118 |
+
cluster_titles = video_stats_df[video_stats_df["Cluster"] == i]['Title'].tolist()
|
119 |
+
cluster_text = ' '.join(cluster_titles)
|
120 |
+
summary = summarize_cluster(cluster_text, openai_key, i)
|
121 |
+
cluster_summaries.append(summary)
|
122 |
+
|
123 |
+
cluster_summary_df = pd.DataFrame({'Cluster': range(n_clusters), 'Summary': cluster_summaries})
|
124 |
+
return cluster_summary_df
|
125 |
+
|
126 |
+
def summarize_cluster(cluster_text, openai_key, cluster_num):
|
127 |
+
openai.api_key = openai_key
|
128 |
+
prompt = f"これらの動画を日本語で徹底解析して要約し、動画の特徴・人気要因を500文字以内で解説してください: {cluster_text}"
|
129 |
+
response = openai.ChatCompletion.create(
|
130 |
+
model="gpt-3.5-turbo",
|
131 |
+
messages=[
|
132 |
+
{"role": "system", "content": "あなたは世界中の人気動画や大規模データを解析してきた天才AI・データサイエンティストです"},
|
133 |
+
{"role": "user", "content": prompt}
|
134 |
+
],
|
135 |
+
max_tokens=500,
|
136 |
+
n=1,
|
137 |
+
stop=None,
|
138 |
+
temperature=0.7,
|
139 |
+
)
|
140 |
+
summary = response['choices'][0]['message']['content'].strip()
|
141 |
+
return summary
|
142 |
+
|
143 |
+
def main(api_key, openai_key, query, max_results, period, page, n_clusters=5):
|
144 |
+
if query:
|
145 |
+
# 期間の設定
|
146 |
+
now = datetime.utcnow()
|
147 |
+
published_before = now.isoformat("T") + "Z"
|
148 |
+
if period == "1週間":
|
149 |
+
published_after = (now - timedelta(days=7)).isoformat("T") + "Z"
|
150 |
+
elif period == "1か月":
|
151 |
+
published_after = (now - timedelta(days=30)).isoformat("T") + "Z"
|
152 |
+
elif period == "3か月":
|
153 |
+
published_after = (now - timedelta(days=90)).isoformat("T") + "Z"
|
154 |
+
else:
|
155 |
+
published_after = (now - timedelta(days=30)).isoformat("T") + "Z" # デフォルトで1か月
|
156 |
+
|
157 |
+
video_stats_df = get_video_data(api_key, query, max_results, published_after, published_before)
|
158 |
+
|
159 |
+
if page == "Video Ranking":
|
160 |
+
video_stats_df, fig, csv_download_link = visualize_video_ranking(video_stats_df)
|
161 |
+
return video_stats_df, fig, csv_download_link
|
162 |
+
|
163 |
+
elif page == "Title Analysis":
|
164 |
+
cluster_summary_df = analyze_titles(video_stats_df, openai_key, n_clusters)
|
165 |
+
return cluster_summary_df, None, None
|
166 |
+
|
167 |
+
iface = gr.Interface(
|
168 |
+
fn=main,
|
169 |
+
inputs=[
|
170 |
+
gr.components.Textbox(label="YouTube API Keyを入力してください", type="password"),
|
171 |
+
gr.components.Textbox(label="OpenAI API Keyを入力してください", type="password"),
|
172 |
+
gr.components.Textbox(label="Search query"),
|
173 |
+
gr.components.Slider(minimum=1, maximum=1000, value=5, label="Max results"),
|
174 |
+
gr.components.Dropdown(["1週間", "1か月", "3か月"], label="Period"),
|
175 |
+
gr.components.Dropdown(["Video Ranking", "Title Analysis"], label="Page"),
|
176 |
+
gr.components.Slider(minimum=2, maximum=10, value=5, label="Number of clusters")
|
177 |
+
],
|
178 |
+
outputs=[
|
179 |
+
gr.components.Dataframe(label="Results"),
|
180 |
+
gr.components.Plot(label="Plot"),
|
181 |
+
gr.components.HTML(label="CSV Download Link")
|
182 |
+
],
|
183 |
+
live=False,
|
184 |
+
title="YouTube Analysis Tool"
|
185 |
+
)
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
iface.launch()
|