xtristan commited on
Commit
a6fce5e
·
verified ·
1 Parent(s): d7914be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -86
app.py CHANGED
@@ -1,74 +1,55 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
  return image, seed
52
-
53
-
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
@@ -76,19 +57,13 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
-
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,59 +71,51 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
-
119
  with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
 
 
 
 
 
 
 
 
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
 
 
5
  import torch
6
+ from diffusers import DiffusionPipeline
7
 
8
+ dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
10
 
11
+ pipe = DiffusionPipeline.from_pretrained("shuttleai/shuttle-3-diffusion", torch_dtype=dtype).to(device)
 
 
 
 
 
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
+ MAX_IMAGE_SIZE = 2048
 
15
 
16
+ @spaces.GPU()
17
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
 
20
  generator = torch.Generator().manual_seed(seed)
 
21
  image = pipe(
22
+ prompt = prompt,
23
+ width = width,
24
+ height = height,
25
+ num_inference_steps = num_inference_steps,
26
+ generator = generator,
27
+ guidance_scale=0.0
28
+ ).images[0]
 
 
29
  return image, seed
30
+
 
31
  examples = [
32
+ "a tiny astronaut hatching from an egg on the moon",
33
+ "a cat holding a sign that says hello world",
34
+ "an anime illustration of a wiener schnitzel",
35
  ]
36
 
37
+ css="""
38
  #col-container {
39
  margin: 0 auto;
40
+ max-width: 520px;
41
  }
42
  """
43
 
44
  with gr.Blocks(css=css) as demo:
45
+
46
  with gr.Column(elem_id="col-container"):
47
+ gr.Markdown(f"""# Shuttle 3 Diffusion
48
+ Shuttle 3 Diffusion is a text-to-image AI model designed to create detailed and diverse images from textual prompts in just 4 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
49
+ """)
50
+
51
  with gr.Row():
52
+
53
  prompt = gr.Text(
54
  label="Prompt",
55
  show_label=False,
 
57
  placeholder="Enter your prompt",
58
  container=False,
59
  )
60
+
61
+ run_button = gr.Button("Run", scale=0)
62
+
63
  result = gr.Image(label="Result", show_label=False)
64
+
65
  with gr.Accordion("Advanced Settings", open=False):
66
+
 
 
 
 
 
 
67
  seed = gr.Slider(
68
  label="Seed",
69
  minimum=0,
 
71
  step=1,
72
  value=0,
73
  )
74
+
75
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
76
+
77
  with gr.Row():
78
+
79
  width = gr.Slider(
80
  label="Width",
81
  minimum=256,
82
  maximum=MAX_IMAGE_SIZE,
83
  step=32,
84
+ value=1024,
85
  )
86
+
87
  height = gr.Slider(
88
  label="Height",
89
  minimum=256,
90
  maximum=MAX_IMAGE_SIZE,
91
  step=32,
92
+ value=1024,
93
  )
94
+
95
  with gr.Row():
96
+
97
+
 
 
 
 
 
 
98
  num_inference_steps = gr.Slider(
99
  label="Number of inference steps",
100
  minimum=1,
101
  maximum=50,
102
  step=1,
103
+ value=4,
104
  )
105
+
106
+ gr.Examples(
107
+ examples = examples,
108
+ fn = infer,
109
+ inputs = [prompt],
110
+ outputs = [result, seed],
111
+ cache_examples="lazy"
112
+ )
113
 
 
114
  gr.on(
115
  triggers=[run_button.click, prompt.submit],
116
+ fn = infer,
117
+ inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
118
+ outputs = [result, seed]
 
 
 
 
 
 
 
 
 
119
  )
120
 
121
+ demo.launch()