File size: 5,012 Bytes
e6ff83d
 
 
 
 
 
 
 
 
a4a437a
 
 
 
 
 
 
 
 
 
e6ff83d
 
 
 
 
 
 
196b3eb
e6ff83d
 
 
 
8353a27
e6ff83d
 
 
 
 
 
 
 
 
 
 
3295878
e6ff83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295878
096ab7d
e6ff83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python

from __future__ import annotations

import os
import pathlib
import subprocess
import tarfile

if os.getenv('SYSTEM') == 'spaces':
    import mim

    mim.uninstall('mmcv-full', confirm_yes=True)
    mim.install('mmcv-full==1.5.2', is_yes=True)

    subprocess.call('pip uninstall -y opencv-python'.split())
    subprocess.call('pip uninstall -y opencv-python-headless'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())

import cv2
import gradio as gr
import numpy as np

from model import AppModel

DESCRIPTION = '''# MMDetection
This is a demo of MMDetection framework trained on biological dataset [Orgaquant](https://www.nature.com/articles/s41598-019-48874-y) to perform organoid detection.
'''

DEFAULT_MODEL_TYPE = 'detection'
DEFAULT_MODEL_NAMES = {
    'detection': 'Faster-RCNN',
}
DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE]



def update_input_image(image: np.ndarray) -> dict:
    if image is None:
        return gr.Image.update(value=None)
    scale = 1500 / max(image.shape[:2])
    if scale < 1:
        image = cv2.resize(image, None, fx=scale, fy=scale)
    print('Image shape', image.shape)
    return gr.Image.update(value=image)


def update_model_name(model_type: str) -> dict:
    model_dict = getattr(AppModel, f'{model_type.upper()}_MODEL_DICT')
    model_names = list(model_dict.keys())
    model_name = DEFAULT_MODEL_NAMES[model_type]
    return gr.Dropdown.update(choices=model_names, value=model_name)


def update_visualization_score_threshold(model_type: str) -> dict:
    return gr.Slider.update(visible=model_type != 'panoptic_segmentation')


def update_redraw_button(model_type: str) -> dict:
    return gr.Button.update(visible=model_type != 'panoptic_segmentation')


def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])


model = AppModel(DEFAULT_MODEL_NAME)

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(label='Input Image', type='numpy')
            with gr.Group():
                with gr.Row():
                    model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()),
                                          value=DEFAULT_MODEL_TYPE,
                                          label='Model Type')
                with gr.Row():
                    model_name = gr.Dropdown(([
                        'Faster R-CNN (R-50-FPN)']),
                                             value=DEFAULT_MODEL_NAME,
                                             label='Model')
            with gr.Row():
                run_button = gr.Button(value='Run')
                prediction_results = gr.Variable()
        with gr.Column():
            with gr.Row():
                visualization = gr.Image(label='Result', type='numpy')
            with gr.Row():
                visualization_score_threshold = gr.Slider(
                    0,
                    1,
                    step=0.05,
                    value=0.3,
                    label='Visualization Score Threshold')
            with gr.Row():
                redraw_button = gr.Button(value='Redraw')

    with gr.Row():
        paths = sorted(pathlib.Path('images').rglob('*.jpg'))
        example_images = gr.Dataset(components=[input_image],
                                    samples=[[path.as_posix()]
                                             for path in paths])

    input_image.change(fn=update_input_image,
                       inputs=input_image,
                       outputs=input_image)

    model_type.change(fn=update_model_name,
                      inputs=model_type,
                      outputs=model_name)
    model_type.change(fn=update_visualization_score_threshold,
                      inputs=model_type,
                      outputs=visualization_score_threshold)
    model_type.change(fn=update_redraw_button,
                      inputs=model_type,
                      outputs=redraw_button)

    model_name.change(fn=model.set_model, inputs=model_name, outputs=None)
    run_button.click(fn=model.run,
                     inputs=[
                         model_name,
                         input_image,
                         visualization_score_threshold,
                     ],
                     outputs=[
                         prediction_results,
                         visualization,
                     ])
    redraw_button.click(fn=model.visualize_detection_results,
                        inputs=[
                            input_image,
                            prediction_results,
                            visualization_score_threshold,
                        ],
                        outputs=visualization)
    example_images.click(fn=set_example_image,
                         inputs=example_images,
                         outputs=input_image)

demo.queue().launch(show_api=False)