Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import subprocess | |
import tarfile | |
if os.getenv('SYSTEM') == 'spaces': | |
import mim | |
mim.uninstall('mmcv-full', confirm_yes=True) | |
mim.install('mmcv-full==1.5.2', is_yes=True) | |
subprocess.call('pip uninstall -y opencv-python'.split()) | |
subprocess.call('pip uninstall -y opencv-python-headless'.split()) | |
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from model import AppModel | |
DESCRIPTION = '''# MMDetection | |
This is an unofficial demo for [https://github.com/open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection). | |
<img id="overview" alt="overview" src="https://user-images.githubusercontent.com/12907710/137271636-56ba1cd2-b110-4812-8221-b4c120320aa9.png" /> | |
''' | |
DEFAULT_MODEL_TYPE = 'detection' | |
DEFAULT_MODEL_NAMES = { | |
'detection': 'Faster-RCNN', | |
} | |
DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE] | |
def update_input_image(image: np.ndarray) -> dict: | |
if image is None: | |
return gr.Image.update(value=None) | |
scale = 1500 / max(image.shape[:2]) | |
if scale < 1: | |
image = cv2.resize(image, None, fx=scale, fy=scale) | |
print('Image shape', image.shape) | |
return gr.Image.update(value=image) | |
def update_model_name(model_type: str) -> dict: | |
model_dict = getattr(AppModel, f'{model_type.upper()}_MODEL_DICT') | |
model_names = list(model_dict.keys()) | |
model_name = DEFAULT_MODEL_NAMES[model_type] | |
return gr.Dropdown.update(choices=model_names, value=model_name) | |
def update_visualization_score_threshold(model_type: str) -> dict: | |
return gr.Slider.update(visible=model_type != 'panoptic_segmentation') | |
def update_redraw_button(model_type: str) -> dict: | |
return gr.Button.update(visible=model_type != 'panoptic_segmentation') | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
model = AppModel(DEFAULT_MODEL_NAME) | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', type='numpy') | |
with gr.Group(): | |
with gr.Row(): | |
model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()), | |
value=DEFAULT_MODEL_TYPE, | |
label='Model Type') | |
with gr.Row(): | |
model_name = gr.Dropdown(([ | |
'Faster R-CNN (R-50-FPN)']), | |
value=DEFAULT_MODEL_NAME, | |
label='Model') | |
with gr.Row(): | |
run_button = gr.Button(value='Run') | |
prediction_results = gr.Variable() | |
with gr.Column(): | |
with gr.Row(): | |
visualization = gr.Image(label='Result', type='numpy') | |
with gr.Row(): | |
visualization_score_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.3, | |
label='Visualization Score Threshold') | |
with gr.Row(): | |
redraw_button = gr.Button(value='Redraw') | |
with gr.Row(): | |
paths = sorted(pathlib.Path('images').rglob('*.jpg')) | |
example_images = gr.Dataset(components=[input_image], | |
samples=[[path.as_posix()] | |
for path in paths]) | |
input_image.change(fn=update_input_image, | |
inputs=input_image, | |
outputs=input_image) | |
model_type.change(fn=update_model_name, | |
inputs=model_type, | |
outputs=model_name) | |
model_type.change(fn=update_visualization_score_threshold, | |
inputs=model_type, | |
outputs=visualization_score_threshold) | |
model_type.change(fn=update_redraw_button, | |
inputs=model_type, | |
outputs=redraw_button) | |
model_name.change(fn=model.set_model, inputs=model_name, outputs=None) | |
run_button.click(fn=model.run, | |
inputs=[ | |
model_name, | |
input_image, | |
visualization_score_threshold, | |
], | |
outputs=[ | |
prediction_results, | |
visualization, | |
]) | |
redraw_button.click(fn=model.visualize_detection_results, | |
inputs=[ | |
input_image, | |
prediction_results, | |
visualization_score_threshold, | |
], | |
outputs=visualization) | |
example_images.click(fn=set_example_image, | |
inputs=example_images, | |
outputs=input_image) | |
demo.queue().launch(show_api=False) |