Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import huggingface_hub | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import yaml # type: ignore | |
from mmdet.apis import inference_detector, init_detector | |
class Model: | |
def __init__(self, model_name: str): | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.model_name = model_name | |
self.model = self._load_model(model_name) | |
def _load_model(self, name: str) -> nn.Module: | |
return init_detector('configs/_base_/faster-rcnn_r50_fpn_1x_coco.py', 'models/orgaquant_pretrained.pth' , device=self.device) | |
def set_model(self, name: str) -> None: | |
if name == self.model_name: | |
return | |
self.model_name = name | |
self.model = self._load_model(name) | |
def detect_and_visualize( | |
self, image: np.ndarray, score_threshold: float | |
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], | |
list[list[np.ndarray]]] | |
| dict[str, np.ndarray], np.ndarray]: | |
out = self.detect(image) | |
vis = self.visualize_detection_results(image, out, score_threshold) | |
return out, vis | |
def detect( | |
self, image: np.ndarray | |
) -> list[np.ndarray] | tuple[ | |
list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray]: | |
out = inference_detector(self.model, image) | |
return out | |
def visualize_detection_results( | |
self, | |
image: np.ndarray, | |
detection_results: list[np.ndarray] | |
| tuple[list[np.ndarray], list[list[np.ndarray]]] | |
| dict[str, np.ndarray], | |
score_threshold: float = 0.3) -> np.ndarray: | |
vis = self.model.show_result(image, | |
detection_results, | |
score_thr=score_threshold, | |
bbox_color=None, | |
text_color=(200, 200, 200), | |
mask_color=None) | |
return vis | |
class AppModel(Model): | |
def run( | |
self, model_name: str, image: np.ndarray, score_threshold: float | |
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], | |
list[list[np.ndarray]]] | |
| dict[str, np.ndarray], np.ndarray]: | |
self.set_model(model_name) | |
return self.detect_and_visualize(image, score_threshold) |