shvardhan commited on
Commit
a3a1e0f
·
1 Parent(s): 0d25626

update application file

Browse files
configs/_base_/faster-rcnn_r50_fpn_1x_coco.py CHANGED
@@ -168,71 +168,52 @@ test_pipeline = [
168
 
169
  evaluation = dict(interval=1, metric='bbox')
170
 
171
- data_root = 'data/' # dataset root
172
-
173
- train_batch_size_per_gpu = 16
174
- train_num_workers = 1
175
-
176
- max_epochs = 105
177
- base_lr = 0.00001
178
-
179
-
180
- metainfo = {
181
- 'classes': ('orgaquant', ),
182
- 'palette': [
183
- (220, 20, 60),
184
- ]
185
- }
186
-
187
- train_dataloader = dict(
188
- batch_size=train_batch_size_per_gpu,
189
- num_workers=train_num_workers,
190
- dataset=dict(
191
- data_root=data_root,
192
- metainfo=metainfo,
193
- data_prefix=dict(img='train/'),
194
- ann_file='train.json'))
195
-
196
- val_dataloader = dict(
197
- dataset=dict(
198
- data_root=data_root,
199
- metainfo=metainfo,
200
- data_prefix=dict(img='val/'),
201
- ann_file='val.json'))
202
-
203
- test_dataloader = val_dataloader
204
-
205
- val_evaluator = dict(ann_file=data_root + 'val.json')
206
-
207
- test_evaluator = val_evaluator
208
-
209
- model = dict(
210
- roi_head=dict(
211
- bbox_head=dict(num_classes=1)))
212
-
213
-
214
-
215
- # optimizer
216
- optim_wrapper = dict(
217
- _delete_=True,
218
- type='OptimWrapper',
219
- optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
220
- paramwise_cfg=dict(
221
- norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
222
-
223
- default_hooks = dict(
224
- checkpoint=dict(
225
- interval=5,
226
- max_keep_ckpts=2, # only keep latest 2 checkpoints
227
- save_best='auto'
228
- ),
229
- logger=dict(type='LoggerHook', interval=5))
230
-
231
-
232
- # load COCO pre-trained weight
233
-
234
- # load_from = './work_dirs/faster-rcnn_r50_fpn_organoid/best_coco_bbox_mAP_epoch_12.pth'
235
-
236
-
237
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
238
- visualizer = dict(vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])
 
168
 
169
  evaluation = dict(interval=1, metric='bbox')
170
 
171
+ # dataset settings
172
+ dataset_type = 'CocoDataset'
173
+ data_root = 'data/'
174
+ img_norm_cfg = dict(
175
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
176
+ train_pipeline = [
177
+ dict(type='LoadImageFromFile'),
178
+ dict(type='LoadAnnotations', with_bbox=True),
179
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
180
+ dict(type='RandomFlip', flip_ratio=0.5),
181
+ dict(type='Normalize', **img_norm_cfg),
182
+ dict(type='Pad', size_divisor=32),
183
+ dict(type='DefaultFormatBundle'),
184
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
185
+ ]
186
+ test_pipeline = [
187
+ dict(type='LoadImageFromFile'),
188
+ dict(
189
+ type='MultiScaleFlipAug',
190
+ img_scale=(1333, 800),
191
+ flip=False,
192
+ transforms=[
193
+ dict(type='Resize', keep_ratio=True),
194
+ dict(type='RandomFlip'),
195
+ dict(type='Normalize', **img_norm_cfg),
196
+ dict(type='Pad', size_divisor=32),
197
+ dict(type='ImageToTensor', keys=['img']),
198
+ dict(type='Collect', keys=['img']),
199
+ ])
200
+ ]
201
+ data = dict(
202
+ samples_per_gpu=2,
203
+ workers_per_gpu=2,
204
+ train=dict(
205
+ type=dataset_type,
206
+ ann_file=data_root + 'train.json',
207
+ img_prefix=data_root + 'train/',
208
+ pipeline=train_pipeline),
209
+ val=dict(
210
+ type=dataset_type,
211
+ ann_file=data_root + 'val.json',
212
+ img_prefix=data_root + 'val/',
213
+ pipeline=test_pipeline),
214
+ test=dict(
215
+ type=dataset_type,
216
+ ann_file=data_root + 'val.json',
217
+ img_prefix=data_root + 'val/',
218
+ pipeline=test_pipeline))
219
+ evaluation = dict(interval=1, metric='bbox')