Spaces:
Runtime error
Runtime error
update application file
Browse files
configs/_base_/faster-rcnn_r50_fpn_1x_coco.py
CHANGED
@@ -168,71 +168,52 @@ test_pipeline = [
|
|
168 |
|
169 |
evaluation = dict(interval=1, metric='bbox')
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
'
|
183 |
-
|
184 |
-
]
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
paramwise_cfg=dict(
|
221 |
-
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
222 |
-
|
223 |
-
default_hooks = dict(
|
224 |
-
checkpoint=dict(
|
225 |
-
interval=5,
|
226 |
-
max_keep_ckpts=2, # only keep latest 2 checkpoints
|
227 |
-
save_best='auto'
|
228 |
-
),
|
229 |
-
logger=dict(type='LoggerHook', interval=5))
|
230 |
-
|
231 |
-
|
232 |
-
# load COCO pre-trained weight
|
233 |
-
|
234 |
-
# load_from = './work_dirs/faster-rcnn_r50_fpn_organoid/best_coco_bbox_mAP_epoch_12.pth'
|
235 |
-
|
236 |
-
|
237 |
-
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
|
238 |
-
visualizer = dict(vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])
|
|
|
168 |
|
169 |
evaluation = dict(interval=1, metric='bbox')
|
170 |
|
171 |
+
# dataset settings
|
172 |
+
dataset_type = 'CocoDataset'
|
173 |
+
data_root = 'data/'
|
174 |
+
img_norm_cfg = dict(
|
175 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
176 |
+
train_pipeline = [
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
179 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
180 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
181 |
+
dict(type='Normalize', **img_norm_cfg),
|
182 |
+
dict(type='Pad', size_divisor=32),
|
183 |
+
dict(type='DefaultFormatBundle'),
|
184 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
185 |
+
]
|
186 |
+
test_pipeline = [
|
187 |
+
dict(type='LoadImageFromFile'),
|
188 |
+
dict(
|
189 |
+
type='MultiScaleFlipAug',
|
190 |
+
img_scale=(1333, 800),
|
191 |
+
flip=False,
|
192 |
+
transforms=[
|
193 |
+
dict(type='Resize', keep_ratio=True),
|
194 |
+
dict(type='RandomFlip'),
|
195 |
+
dict(type='Normalize', **img_norm_cfg),
|
196 |
+
dict(type='Pad', size_divisor=32),
|
197 |
+
dict(type='ImageToTensor', keys=['img']),
|
198 |
+
dict(type='Collect', keys=['img']),
|
199 |
+
])
|
200 |
+
]
|
201 |
+
data = dict(
|
202 |
+
samples_per_gpu=2,
|
203 |
+
workers_per_gpu=2,
|
204 |
+
train=dict(
|
205 |
+
type=dataset_type,
|
206 |
+
ann_file=data_root + 'train.json',
|
207 |
+
img_prefix=data_root + 'train/',
|
208 |
+
pipeline=train_pipeline),
|
209 |
+
val=dict(
|
210 |
+
type=dataset_type,
|
211 |
+
ann_file=data_root + 'val.json',
|
212 |
+
img_prefix=data_root + 'val/',
|
213 |
+
pipeline=test_pipeline),
|
214 |
+
test=dict(
|
215 |
+
type=dataset_type,
|
216 |
+
ann_file=data_root + 'val.json',
|
217 |
+
img_prefix=data_root + 'val/',
|
218 |
+
pipeline=test_pipeline))
|
219 |
+
evaluation = dict(interval=1, metric='bbox')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|