Spaces:
Runtime error
Runtime error
update config file
Browse files
configs/_base_/faster-rcnn_r50_fpn_1x_coco.py
CHANGED
@@ -111,4 +111,65 @@ model = dict(
|
|
111 |
max_per_img=100)
|
112 |
# soft-nms is also supported for rcnn testing
|
113 |
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
114 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
max_per_img=100)
|
112 |
# soft-nms is also supported for rcnn testing
|
113 |
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
114 |
+
))
|
115 |
+
|
116 |
+
## Default runtime
|
117 |
+
checkpoint_config = dict(interval=1)
|
118 |
+
# yapf:disable
|
119 |
+
log_config = dict(
|
120 |
+
interval=50,
|
121 |
+
hooks=[
|
122 |
+
dict(type='TextLoggerHook'),
|
123 |
+
# dict(type='TensorboardLoggerHook')
|
124 |
+
])
|
125 |
+
# yapf:enable
|
126 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
127 |
+
|
128 |
+
dist_params = dict(backend='nccl')
|
129 |
+
log_level = 'INFO'
|
130 |
+
load_from = None
|
131 |
+
resume_from = None
|
132 |
+
workflow = [('train', 1)]
|
133 |
+
|
134 |
+
# disable opencv multithreading to avoid system being overloaded
|
135 |
+
opencv_num_threads = 0
|
136 |
+
# set multi-process start method as `fork` to speed up the training
|
137 |
+
mp_start_method = 'fork'
|
138 |
+
|
139 |
+
# Default setting for scaling LR automatically
|
140 |
+
# - `enable` means enable scaling LR automatically
|
141 |
+
# or not by default.
|
142 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
143 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
144 |
+
|
145 |
+
|
146 |
+
# dataset settings
|
147 |
+
img_norm_cfg = dict(
|
148 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
149 |
+
train_pipeline = [
|
150 |
+
dict(type='LoadImageFromFile'),
|
151 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
152 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
153 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
154 |
+
dict(type='Normalize', **img_norm_cfg),
|
155 |
+
dict(type='Pad', size_divisor=32),
|
156 |
+
dict(type='DefaultFormatBundle'),
|
157 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
158 |
+
]
|
159 |
+
test_pipeline = [
|
160 |
+
dict(type='LoadImageFromFile'),
|
161 |
+
dict(
|
162 |
+
type='MultiScaleFlipAug',
|
163 |
+
img_scale=(1333, 800),
|
164 |
+
flip=False,
|
165 |
+
transforms=[
|
166 |
+
dict(type='Resize', keep_ratio=True),
|
167 |
+
dict(type='RandomFlip'),
|
168 |
+
dict(type='Normalize', **img_norm_cfg),
|
169 |
+
dict(type='Pad', size_divisor=32),
|
170 |
+
dict(type='ImageToTensor', keys=['img']),
|
171 |
+
dict(type='Collect', keys=['img']),
|
172 |
+
])
|
173 |
+
]
|
174 |
+
|
175 |
+
evaluation = dict(interval=1, metric='bbox')
|