shvardhan commited on
Commit
c8b5c6e
·
1 Parent(s): 8f9ebd0

update config file

Browse files
configs/_base_/faster-rcnn_r50_fpn_1x_coco.py CHANGED
@@ -111,4 +111,65 @@ model = dict(
111
  max_per_img=100)
112
  # soft-nms is also supported for rcnn testing
113
  # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
114
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  max_per_img=100)
112
  # soft-nms is also supported for rcnn testing
113
  # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
114
+ ))
115
+
116
+ ## Default runtime
117
+ checkpoint_config = dict(interval=1)
118
+ # yapf:disable
119
+ log_config = dict(
120
+ interval=50,
121
+ hooks=[
122
+ dict(type='TextLoggerHook'),
123
+ # dict(type='TensorboardLoggerHook')
124
+ ])
125
+ # yapf:enable
126
+ custom_hooks = [dict(type='NumClassCheckHook')]
127
+
128
+ dist_params = dict(backend='nccl')
129
+ log_level = 'INFO'
130
+ load_from = None
131
+ resume_from = None
132
+ workflow = [('train', 1)]
133
+
134
+ # disable opencv multithreading to avoid system being overloaded
135
+ opencv_num_threads = 0
136
+ # set multi-process start method as `fork` to speed up the training
137
+ mp_start_method = 'fork'
138
+
139
+ # Default setting for scaling LR automatically
140
+ # - `enable` means enable scaling LR automatically
141
+ # or not by default.
142
+ # - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
143
+ auto_scale_lr = dict(enable=False, base_batch_size=16)
144
+
145
+
146
+ # dataset settings
147
+ img_norm_cfg = dict(
148
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
149
+ train_pipeline = [
150
+ dict(type='LoadImageFromFile'),
151
+ dict(type='LoadAnnotations', with_bbox=True),
152
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
153
+ dict(type='RandomFlip', flip_ratio=0.5),
154
+ dict(type='Normalize', **img_norm_cfg),
155
+ dict(type='Pad', size_divisor=32),
156
+ dict(type='DefaultFormatBundle'),
157
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
158
+ ]
159
+ test_pipeline = [
160
+ dict(type='LoadImageFromFile'),
161
+ dict(
162
+ type='MultiScaleFlipAug',
163
+ img_scale=(1333, 800),
164
+ flip=False,
165
+ transforms=[
166
+ dict(type='Resize', keep_ratio=True),
167
+ dict(type='RandomFlip'),
168
+ dict(type='Normalize', **img_norm_cfg),
169
+ dict(type='Pad', size_divisor=32),
170
+ dict(type='ImageToTensor', keys=['img']),
171
+ dict(type='Collect', keys=['img']),
172
+ ])
173
+ ]
174
+
175
+ evaluation = dict(interval=1, metric='bbox')