#!/usr/bin/env python from __future__ import annotations import os import pathlib import subprocess import tarfile if os.getenv('SYSTEM') == 'spaces': import mim mim.uninstall('mmcv-full', confirm_yes=True) mim.install('mmcv-full==1.5.2', is_yes=True) subprocess.call('pip uninstall -y opencv-python'.split()) subprocess.call('pip uninstall -y opencv-python-headless'.split()) subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) import cv2 import gradio as gr import numpy as np from model import AppModel DESCRIPTION = '''# MMDetection This is a demo of MMDetection framework trained on biological dataset [Orgaquant](https://www.nature.com/articles/s41598-019-48874-y) to perform organoid detection. ''' DEFAULT_MODEL_TYPE = 'detection' DEFAULT_MODEL_NAMES = { 'detection': 'Faster-RCNN', } DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE] def update_input_image(image: np.ndarray) -> dict: if image is None: return gr.Image.update(value=None) scale = 1500 / max(image.shape[:2]) if scale < 1: image = cv2.resize(image, None, fx=scale, fy=scale) print('Image shape', image.shape) return gr.Image.update(value=image) def update_model_name(model_type: str) -> dict: model_dict = getattr(AppModel, f'{model_type.upper()}_MODEL_DICT') model_names = list(model_dict.keys()) model_name = DEFAULT_MODEL_NAMES[model_type] return gr.Dropdown.update(choices=model_names, value=model_name) def update_visualization_score_threshold(model_type: str) -> dict: return gr.Slider.update(visible=model_type != 'panoptic_segmentation') def update_redraw_button(model_type: str) -> dict: return gr.Button.update(visible=model_type != 'panoptic_segmentation') def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) model = AppModel(DEFAULT_MODEL_NAME) with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Group(): with gr.Row(): model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()), value=DEFAULT_MODEL_TYPE, label='Model Type') with gr.Row(): model_name = gr.Dropdown(([ 'Faster R-CNN (R-50-FPN)']), value=DEFAULT_MODEL_NAME, label='Model') with gr.Row(): run_button = gr.Button(value='Run') prediction_results = gr.Variable() with gr.Column(): with gr.Row(): visualization = gr.Image(label='Result', type='numpy') with gr.Row(): visualization_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.3, label='Visualization Score Threshold') with gr.Row(): redraw_button = gr.Button(value='Redraw') with gr.Row(): paths = sorted(pathlib.Path('images').rglob('*.jpg')) example_images = gr.Dataset(components=[input_image], samples=[[path.as_posix()] for path in paths]) input_image.change(fn=update_input_image, inputs=input_image, outputs=input_image) model_type.change(fn=update_model_name, inputs=model_type, outputs=model_name) model_type.change(fn=update_visualization_score_threshold, inputs=model_type, outputs=visualization_score_threshold) model_type.change(fn=update_redraw_button, inputs=model_type, outputs=redraw_button) model_name.change(fn=model.set_model, inputs=model_name, outputs=None) run_button.click(fn=model.run, inputs=[ model_name, input_image, visualization_score_threshold, ], outputs=[ prediction_results, visualization, ]) redraw_button.click(fn=model.visualize_detection_results, inputs=[ input_image, prediction_results, visualization_score_threshold, ], outputs=visualization) example_images.click(fn=set_example_image, inputs=example_images, outputs=input_image) demo.queue().launch(show_api=False)