|
import pandas as pd |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
import streamlit as st |
|
import tweepy |
|
from plotly.subplots import make_subplots |
|
from transformers import pipeline |
|
|
|
consumer_key = "sHz78Xj5Dl41cqfzEHVoRcaKo" |
|
consumer_secret = "3y5caZfu91nmB2MNH7mDSu5Cgf5qaVRpMfbDoCPW4dU7E46k03" |
|
access_key = "1116912581434695680-x359MscPSdqEcJzoIlg4jMsCZRdyNX" |
|
access_secret = "wEsALFUava2TnYXWnuacrzSK4eiYfJUFLBRWPqGuMRnTz" |
|
|
|
auth = tweepy.OAuthHandler(consumer_key,consumer_secret) |
|
auth.set_access_token(access_key,access_secret) |
|
api = tweepy.API(auth) |
|
|
|
|
|
def get_tweets(username, count): |
|
tweets = tweepy.Cursor( |
|
api.user_timeline, |
|
screen_name=username, |
|
tweet_mode="extended", |
|
exclude_replies=True, |
|
include_rts=False, |
|
).items(count) |
|
|
|
tweets = list(tweets) |
|
response = { |
|
"tweets": [tweet.full_text.replace("\n", "").lower() for tweet in tweets], |
|
"timestamps": [str(tweet.created_at) for tweet in tweets], |
|
"retweets": [tweet.retweet_count for tweet in tweets], |
|
"likes": [tweet.favorite_count for tweet in tweets], |
|
} |
|
return response |
|
|
|
|
|
def get_sentiment(texts): |
|
preds = pipe(texts) |
|
|
|
response = dict() |
|
response["labels"] = [pred["label"] for pred in preds] |
|
response["scores"] = [pred["score"] for pred in preds] |
|
return response |
|
|
|
|
|
def neutralise_sentiment(preds): |
|
for i, (label, score) in enumerate(zip(preds["labels"], preds["scores"])): |
|
if score < 0.5: |
|
preds["labels"][i] = "neutral" |
|
preds["scores"][i] = 1.0 - score |
|
|
|
|
|
def get_aggregation_period(df): |
|
t_min, t_max = df["timestamps"].min(), df["timestamps"].max() |
|
t_delta = t_max - t_min |
|
if t_delta < pd.to_timedelta("30D"): |
|
return "1D" |
|
elif t_delta < pd.to_timedelta("365D"): |
|
return "7D" |
|
else: |
|
return "30D" |
|
|
|
|
|
@st.cache_data |
|
def load_model(): |
|
pipe = pipeline(task="sentiment-analysis", model="bhadresh-savani/distilbert-base-uncased-emotion") |
|
return pipe |
|
|
|
|
|
""" |
|
# Twitter Emotion Analyser |
|
""" |
|
|
|
|
|
pipe = load_model() |
|
twitter_handle = st.sidebar.text_input("Twitter handle:", "elonmusk") |
|
twitter_count = st.sidebar.selectbox("Number of tweets:", (10, 30, 50, 100)) |
|
|
|
|
|
if st.sidebar.button("Get tweets!"): |
|
tweets = get_tweets(twitter_handle, twitter_count) |
|
preds = get_sentiment(tweets["tweets"]) |
|
|
|
tweets.update(preds) |
|
|
|
df = pd.DataFrame(tweets) |
|
df["timestamps"] = pd.to_datetime(df["timestamps"]) |
|
|
|
agg_period = get_aggregation_period(df) |
|
ts_sentiment = ( |
|
df.groupby(["timestamps", "labels"]) |
|
.count()["likes"] |
|
.unstack() |
|
.resample(agg_period) |
|
.count() |
|
.stack() |
|
.reset_index() |
|
) |
|
ts_sentiment.columns = ["timestamp", "label", "count"] |
|
|
|
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.15) |
|
|
|
|
|
for label in ts_sentiment["label"].unique(): |
|
fig.add_trace( |
|
go.Scatter( |
|
x=ts_sentiment.query("label == @label")["timestamp"], |
|
y=ts_sentiment.query("label == @label")["count"], |
|
mode="lines", |
|
name=label, |
|
stackgroup="one", |
|
hoverinfo="x+y", |
|
), |
|
row=1, |
|
col=1, |
|
) |
|
|
|
likes_per_label = df.groupby("labels")["likes"].mean().reset_index() |
|
|
|
fig.add_trace( |
|
go.Bar( |
|
x=likes_per_label["labels"], |
|
y=likes_per_label["likes"], |
|
showlegend=False, |
|
marker_color=px.colors.qualitative.Plotly, |
|
opacity=0.6, |
|
), |
|
row=1, |
|
col=2, |
|
) |
|
|
|
fig.update_yaxes(title_text="Number of Tweets", row=1, col=1) |
|
fig.update_yaxes(title_text="Number of Likes", row=1, col=2) |
|
fig.update_layout(height=350, width=750) |
|
|
|
st.plotly_chart(fig) |
|
|
|
|
|
st.markdown(df.sample(n=5).to_markdown()) |