deploy-s2s-api / data /fbank.py
3v324v23's picture
Add application file
ad48e75
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
# from lhotse.features.base import FeatureExtractor
# from lhotse.utils import EPSILON, Seconds, compute_num_frames
from librosa.filters import mel as librosa_mel_fn
@dataclass
class BigVGANFbankConfig:
# Spectogram-related part
# Note that frame_length and frame_shift will be converted to milliseconds before torchaudio/Kaldi sees them
frame_length: Seconds = 1024 / 24000.0
frame_shift: Seconds = 256 / 24000.0
remove_dc_offset: bool = True
round_to_power_of_two: bool = True
# Fbank-related part
low_freq: float = 0.0
high_freq: float = 12000.0
num_mel_bins: int = 100
use_energy: bool = False
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@staticmethod
def from_dict(data: Dict[str, Any]) -> "BigVGANFbankConfig":
return BigVGANFbankConfig(**data)
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
# https://github.com/NVIDIA/BigVGAN
# bigvgan_24khz_100band https://drive.google.com/drive/folders/1EpxX6AsxjCbbk0mmAhE0td6eYiABr8Oz
class BigVGANFbank(FeatureExtractor):
name = "fbank"
config_type = BigVGANFbankConfig
def __init__(self, config: Optional[Any] = None):
super(BigVGANFbank, self).__init__(config)
sampling_rate = 24000
self.mel_basis = torch.from_numpy(
librosa_mel_fn(
sampling_rate,
1024,
self.config.num_mel_bins,
self.config.low_freq,
self.config.high_freq,
).astype(np.float32)
)
self.hann_window = torch.hann_window(1024)
def _feature_fn(self, samples, **kwargs):
win_length, n_fft = 1024, 1024
hop_size = 256
if True:
sampling_rate = 24000
duration = round(samples.shape[-1] / sampling_rate, ndigits=12)
expected_num_frames = compute_num_frames(
duration=duration,
frame_shift=self.frame_shift,
sampling_rate=sampling_rate,
)
pad_size = (
(expected_num_frames - 1) * hop_size
+ win_length
- samples.shape[-1]
)
assert pad_size >= 0
y = torch.nn.functional.pad(
samples,
(0, pad_size),
mode="constant",
)
else:
y = torch.nn.functional.pad(
samples,
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_length,
window=self.hann_window,
center=False,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(self.mel_basis, spec)
spec = spectral_normalize_torch(spec)
return spec.transpose(2, 1).squeeze(0)
def extract(
self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int
) -> np.ndarray:
assert sampling_rate == 24000
params = asdict(self.config)
params.update({"sample_frequency": sampling_rate, "snip_edges": False})
params["frame_shift"] *= 1000.0
params["frame_length"] *= 1000.0
if not isinstance(samples, torch.Tensor):
samples = torch.from_numpy(samples)
# Torchaudio Kaldi feature extractors expect the channel dimension to be first.
if len(samples.shape) == 1:
samples = samples.unsqueeze(0)
features = self._feature_fn(samples, **params).to(torch.float32)
return features.numpy()
@property
def frame_shift(self) -> Seconds:
return self.config.frame_shift
def feature_dim(self, sampling_rate: int) -> int:
return self.config.num_mel_bins
@staticmethod
def mix(
features_a: np.ndarray,
features_b: np.ndarray,
energy_scaling_factor_b: float,
) -> np.ndarray:
return np.log(
np.maximum(
# protection against log(0); max with EPSILON is adequate since these are energies (always >= 0)
EPSILON,
np.exp(features_a)
+ energy_scaling_factor_b * np.exp(features_b),
)
)
@staticmethod
def compute_energy(features: np.ndarray) -> float:
return float(np.sum(np.exp(features)))
def get_fbank_extractor() -> BigVGANFbank:
return BigVGANFbank(BigVGANFbankConfig())
if __name__ == "__main__":
extractor = BigVGANFbank(BigVGANFbankConfig())
samples = torch.from_numpy(np.random.random([1000]).astype(np.float32))
samples = torch.clip(samples, -1.0, 1.0)
fbank = extractor.extract(samples, 24000.0)
print(f"fbank {fbank.shape}")
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
sampling_rate, samples = read(
"egs/libritts/prompts/5639_40744_000000_000002.wav"
)
print(f"samples: [{samples.min()}, {samples.max()}]")
fbank = extractor.extract(samples.astype(np.float32) / MAX_WAV_VALUE, 24000)
print(f"fbank {fbank.shape}")
import matplotlib.pyplot as plt
_ = plt.figure(figsize=(18, 10))
plt.imshow(
X=fbank.transpose(1, 0),
cmap=plt.get_cmap("jet"),
aspect="auto",
interpolation="nearest",
)
plt.gca().invert_yaxis()
plt.savefig("egs/libritts/prompts/5639_40744_000000_000002.png")
plt.close()
print("fbank test PASS!")