File size: 9,520 Bytes
81291e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
from bs4 import BeautifulSoup
from datetime import datetime, timedelta
import json
import re
import requests
import nltk
from nltk.corpus import cmudict
# nltk.download('punkt')
# nltk.download('cmudict')
from langdetect import detect
import os
from dotenv import load_dotenv
def init():
'''Initialize the environment.'''
load_dotenv()
global spotify_cid
global spotify_secret
global genius_token
global headers
spotify_cid = os.getenv("SPOTIFY_CID")
spotify_secret = os.getenv("SPOTIFY_SECRET")
genius_token = os.getenv("GENIUS_TOKEN")
headers = {"Authorization": "Bearer " + genius_token}
# Cache
CACHE_FILENAME = "cache.json"
def openCache():
'''Check if cache file exists, if so load it, if not create new cache'''
try:
cache_file = open(CACHE_FILENAME, "r")
cache_contents = cache_file.read()
cache_dict = json.loads(cache_contents)
cache_file.close()
except:
cache_dict = {}
return cache_dict
def saveCache(cache_dict):
'''Save cache file'''
cache_file = open(CACHE_FILENAME, "w")
contents_to_write = json.dumps(cache_dict)
cache_file.write(contents_to_write)
cache_file.close()
# Billboard scraper
def scrapeBillboard(date):
'''
Scrape the Billboard Hot 100 chart for a given date.
Parameters:
date (datetime.date): The date of the chart.
Returns:
list: A list of tuples containing the title and artist of each song.
'''
url = "https://www.billboard.com/charts/hot-100/" + str(date) + "/"
html = requests.get(url)
soup = BeautifulSoup(html.content, "html.parser")
ul = soup.findAll("ul", class_="o-chart-results-list-row")
billboard = []
for i in ul:
title = i.find("h3").text.strip()
artist = i.find("span", class_="a-font-primary-s").text.strip()
billboard.append((title, artist))
return billboard
# Spotify API
def getSpotifyToken():
'''Get the Spotify access token.'''
response = requests.post(
"https://accounts.spotify.com/api/token",
data={
"grant_type": "client_credentials",
"client_id": spotify_cid,
"client_secret": spotify_secret,
}).json()
return response["access_token"]
def getSpotifyID(token, title, artist):
'''Get the Spotify ID of a song.'''
headers = {"Authorization": "Bearer " + token}
url = f"https://api.spotify.com/v1/search?q={title}%20{artist}&type=track&market=US&limit=1"
response = requests.get(url, headers=headers).json()
return response["tracks"]["items"][0]["id"]
def getSpotifyFeatures(token, song_id):
'''Get the Spotify features of a song.'''
headers = {"Authorization": "Bearer " + token}
url = f"https://api.spotify.com/v1/audio-features/{song_id}"
response = requests.get(url, headers=headers)
return response.json()
# Genius API
def getGeniusURL(title, artist):
'''Get the Genius URL of a song.'''
url = "https://api.genius.com/search"
params = {"q": f"{title} {artist}"}
response = requests.get(url, params=params, headers=headers).json()
return response["response"]["hits"][0]["result"]["url"]
def getLyrics(url):
'''Get the lyrics of a song from its Genius URL.'''
html = requests.get(url)
soup = BeautifulSoup(html.content, "html.parser")
lyrics = soup.find("div", {"data-lyrics-container": "true"}).get_text(separator="\n")
return lyrics
# Readability metrics
def countSyllables(word):
'''Count the number of syllables in a word.'''
count = 0
vowels = 'aeiouy'
word = word.lower().strip(".:;?!")
if word[0] in vowels:
count +=1
for index in range(1, len(word)):
if word[index] in vowels and word[index-1] not in vowels:
count +=1
if word.endswith('e'):
count -= 1
if word.endswith('le'):
count += 1
if count == 0:
count +=1
return count
def getFRES(lyrics):
'''Calculate the Flesch reading-ease score (FRES) of a song.'''
# Remove [Verse], [Chorus], etc.
lyrics = re.sub(r"\[.*\]", "", lyrics)
sentence = lyrics.split("\n")
sentence = [i for i in sentence if i]
word = lyrics.split()
word_count = len(word)
sentence_count = len(sentence)
syllable_count = sum([countSyllables(token) for token in word])
return 206.835 - (1.015 * (word_count / sentence_count)) - (84.6 * (syllable_count / word_count))
def vocabComplex(lyrics):
'''Calculate the ratio of different unique word stems (types) to the total number of words (tokens).'''
tokens = nltk.word_tokenize(lyrics.lower())
return len(set(tokens)) / len(tokens)
def sentenceLength(lyrics):
'''Calculate the average number of words in a sentence.'''
sentences = nltk.sent_tokenize(lyrics)
total_words = sum(len(nltk.word_tokenize(sent)) for sent in sentences)
return total_words / len(sentences)
def avgSyllable(lyrics):
"""Calculate the average number of syllables per word."""
d = cmudict.dict()
words = lyrics.split()
total_syllables = sum(len(d[word.lower()][0]) for word in words if word.lower() in d)
return total_syllables / len(words)
# Data consolidation
def addAllFeatures(dataset, billboard):
'''
Add new songs on the Billboard Hot 100 to the dataset with all features including lyrics.
Parameters:
dataset (dict): The dataset.
billboard (list): The list of songs on the Billboard Hot 100.
Returns:
dict: The dataset with lyrics.
'''
spotify_token = getSpotifyToken()
for title, artist in billboard:
# Skip if the song is already in the dataset
abbrev = title.replace("_", " ") + "_" + artist.replace("_", " ")
if abbrev in dataset["data"]:
continue
try:
# Get the Spotify features, Genius lyrics, and FRES
print("Running: ", abbrev)
spotify_id = getSpotifyID(spotify_token, title, artist)
features = getSpotifyFeatures(getSpotifyToken(), spotify_id)
genius_url = getGeniusURL(title, artist)
lyrics = getLyrics(genius_url)
features["fres"] = getFRES(lyrics)
features["vocabComplex"] = vocabComplex(lyrics)
features["sentenceLength"] = sentenceLength(lyrics)
features["avgSyllable"] = avgSyllable(lyrics)
features["lyrics"] = lyrics
features["title"] = title.replace("_", " ")
features["artist"] = artist.replace("_", " ")
features["lang"] = detect(lyrics)
except:
# Skip if the song is not found on Spotify or Genius
print("Not found: ", abbrev)
continue
# Add the song with features to the dataset
dataset["data"][abbrev] = features
return dataset
def updateCache():
'''Update the dataset with new songs on the Billboard Hot 100.'''
dataset = openCache()
# Billboard Hot 100 is updated every Saturday
today = datetime.today().date()
saturday = today + timedelta(days=5-today.weekday())
# If cache is empty, add all songs on the Billboard Hot 100 from the past year to the dataset
if dataset == {}:
dataset["updated_week"] = str(saturday)
dataset["data"] = {}
billboard = []
for i in range(52):
billboard.extend(scrapeBillboard(saturday))
saturday -= timedelta(days=7)
billboard = list(set(billboard))
dataset = addAllFeatures(dataset, billboard)
saveCache(dataset)
# If cache is not empty, check if the dataset is up to date
else:
# If not, updated new songs from the last updated week to the current week to the dataset
if dataset["updated_week"] != str(saturday):
last_updated = dataset["updated_week"]
dataset["updated_week"] = str(saturday)
billboard = []
while str(saturday) != last_updated:
billboard.extend(scrapeBillboard(saturday))
saturday -= timedelta(days=7)
billboard = list(set(billboard))
dataset = addAllFeatures(dataset, billboard)
saveCache(dataset)
else:
print("Dataset is up to date.")
print("Data retrieved: ", len(dataset["data"]))
print("Data sample: ", dataset["data"]["Houdini_Dua Lipa"])
def exportData():
'''Export the dataset to a JSON file.'''
dataset = openCache()
data = dataset["data"]
# Prepare data by selecting only specific attributes for each song
filtered_data = []
for song in data:
features = data[song]
filtered_data.append({
"id": features['id'],
"title": features['title'],
"artist": features['artist'],
"danceability": features['danceability'],
"valence": features['valence'],
"speechiness": features['speechiness'],
"fres": features['fres'],
"vocabComplex": features['vocabComplex'],
"sentenceLength": features['sentenceLength'],
"avgSyllable": features['avgSyllable'],
"lyrics": features['lyrics'],
"lang": features["lang"]
})
# Export the filtered data to a JSON file
with open("data.json", "w") as file:
json.dump(filtered_data, file, indent=4)
if __name__ == "__main__":
init()
updateCache()
exportData() |