File size: 18,695 Bytes
e331e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Visualizing the knowledge graph with `yfiles-jupyter-graphs`\n",
    "\n",
    "This notebook is a partial copy of [local_search.ipynb](../../local_search.ipynb) that shows how to use `yfiles-jupyter-graphs` to add interactive graph visualizations of the parquet files  and how to visualize the result context of `graphrag` queries (see at the end of this notebook)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright (c) 2024 Microsoft Corporation.\n",
    "# Licensed under the MIT License."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "import pandas as pd\n",
    "import tiktoken\n",
    "\n",
    "from graphrag.query.context_builder.entity_extraction import EntityVectorStoreKey\n",
    "from graphrag.query.indexer_adapters import (\n",
    "    read_indexer_covariates,\n",
    "    read_indexer_entities,\n",
    "    read_indexer_relationships,\n",
    "    read_indexer_reports,\n",
    "    read_indexer_text_units,\n",
    ")\n",
    "from graphrag.query.input.loaders.dfs import (\n",
    "    store_entity_semantic_embeddings,\n",
    ")\n",
    "from graphrag.query.llm.oai.chat_openai import ChatOpenAI\n",
    "from graphrag.query.llm.oai.embedding import OpenAIEmbedding\n",
    "from graphrag.query.llm.oai.typing import OpenaiApiType\n",
    "from graphrag.query.structured_search.local_search.mixed_context import (\n",
    "    LocalSearchMixedContext,\n",
    ")\n",
    "from graphrag.query.structured_search.local_search.search import LocalSearch\n",
    "from graphrag.vector_stores.lancedb import LanceDBVectorStore"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Local Search Example\n",
    "\n",
    "Local search method generates answers by combining relevant data from the AI-extracted knowledge-graph with text chunks of the raw documents. This method is suitable for questions that require an understanding of specific entities mentioned in the documents (e.g. What are the healing properties of chamomile?)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load text units and graph data tables as context for local search\n",
    "\n",
    "- In this test we first load indexing outputs from parquet files to dataframes, then convert these dataframes into collections of data objects aligning with the knowledge model."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load tables to dataframes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "INPUT_DIR = \"../../inputs/operation dulce\"\n",
    "LANCEDB_URI = f\"{INPUT_DIR}/lancedb\"\n",
    "\n",
    "COMMUNITY_REPORT_TABLE = \"create_final_community_reports\"\n",
    "ENTITY_TABLE = \"create_final_nodes\"\n",
    "ENTITY_EMBEDDING_TABLE = \"create_final_entities\"\n",
    "RELATIONSHIP_TABLE = \"create_final_relationships\"\n",
    "COVARIATE_TABLE = \"create_final_covariates\"\n",
    "TEXT_UNIT_TABLE = \"create_final_text_units\"\n",
    "COMMUNITY_LEVEL = 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read entities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# read nodes table to get community and degree data\n",
    "entity_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_TABLE}.parquet\")\n",
    "entity_embedding_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read relationships"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "relationship_df = pd.read_parquet(f\"{INPUT_DIR}/{RELATIONSHIP_TABLE}.parquet\")\n",
    "relationships = read_indexer_relationships(relationship_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Visualizing nodes and relationships with `yfiles-jupyter-graphs`\n",
    "\n",
    "`yfiles-jupyter-graphs` is a graph visualization extension that provides interactive and customizable visualizations for structured node and relationship data.\n",
    "\n",
    "In this case, we use it to provide an interactive visualization for the knowledge graph of the [local_search.ipynb](../../local_search.ipynb) sample by passing node and relationship lists converted from the given parquet files. The requirements for the input data is an `id` attribute for the nodes and `start`/`end` properties for the relationships that correspond to the node ids. Additional attributes can be added in the `properties` of each node/relationship dict:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install yfiles_jupyter_graphs --quiet\n",
    "from yfiles_jupyter_graphs import GraphWidget\n",
    "\n",
    "\n",
    "# converts the entities dataframe to a list of dicts for yfiles-jupyter-graphs\n",
    "def convert_entities_to_dicts(df):\n",
    "    \"\"\"Convert the entities dataframe to a list of dicts for yfiles-jupyter-graphs.\"\"\"\n",
    "    nodes_dict = {}\n",
    "    for _, row in df.iterrows():\n",
    "        # Create a dictionary for each row and collect unique nodes\n",
    "        node_id = row[\"title\"]\n",
    "        if node_id not in nodes_dict:\n",
    "            nodes_dict[node_id] = {\n",
    "                \"id\": node_id,\n",
    "                \"properties\": row.to_dict(),\n",
    "            }\n",
    "    return list(nodes_dict.values())\n",
    "\n",
    "\n",
    "# converts the relationships dataframe to a list of dicts for yfiles-jupyter-graphs\n",
    "def convert_relationships_to_dicts(df):\n",
    "    \"\"\"Convert the relationships dataframe to a list of dicts for yfiles-jupyter-graphs.\"\"\"\n",
    "    relationships = []\n",
    "    for _, row in df.iterrows():\n",
    "        # Create a dictionary for each row\n",
    "        relationships.append({\n",
    "            \"start\": row[\"source\"],\n",
    "            \"end\": row[\"target\"],\n",
    "            \"properties\": row.to_dict(),\n",
    "        })\n",
    "    return relationships\n",
    "\n",
    "\n",
    "w = GraphWidget()\n",
    "w.directed = True\n",
    "w.nodes = convert_entities_to_dicts(entity_df)\n",
    "w.edges = convert_relationships_to_dicts(relationship_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Configure data-driven visualization\n",
    "\n",
    "The additional properties can be used to configure the visualization for different use cases."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# show title on the node\n",
    "w.node_label_mapping = \"title\"\n",
    "\n",
    "\n",
    "# map community to a color\n",
    "def community_to_color(community):\n",
    "    \"\"\"Map a community to a color.\"\"\"\n",
    "    colors = [\n",
    "        \"crimson\",\n",
    "        \"darkorange\",\n",
    "        \"indigo\",\n",
    "        \"cornflowerblue\",\n",
    "        \"cyan\",\n",
    "        \"teal\",\n",
    "        \"green\",\n",
    "    ]\n",
    "    return (\n",
    "        colors[int(community) % len(colors)] if community is not None else \"lightgray\"\n",
    "    )\n",
    "\n",
    "\n",
    "def edge_to_source_community(edge):\n",
    "    \"\"\"Get the community of the source node of an edge.\"\"\"\n",
    "    source_node = next(\n",
    "        (entry for entry in w.nodes if entry[\"properties\"][\"title\"] == edge[\"start\"]),\n",
    "        None,\n",
    "    )\n",
    "    source_node_community = source_node[\"properties\"][\"community\"]\n",
    "    return source_node_community if source_node_community is not None else None\n",
    "\n",
    "\n",
    "w.node_color_mapping = lambda node: community_to_color(node[\"properties\"][\"community\"])\n",
    "w.edge_color_mapping = lambda edge: community_to_color(edge_to_source_community(edge))\n",
    "# map size data to a reasonable factor\n",
    "w.node_scale_factor_mapping = lambda node: 0.5 + node[\"properties\"][\"size\"] * 1.5 / 20\n",
    "# use weight for edge thickness\n",
    "w.edge_thickness_factor_mapping = \"weight\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Automatic layouts\n",
    "\n",
    "The widget provides different automatic layouts that serve different purposes: `Circular`, `Hierarchic`, `Organic (interactiv or static)`, `Orthogonal`, `Radial`, `Tree`, `Geo-spatial`.\n",
    "\n",
    "For the knowledge graph, this sample uses the `Circular` layout, though `Hierarchic` or `Organic` are also suitable choices."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use the circular layout for this visualization. For larger graphs, the default organic layout is often preferrable.\n",
    "w.circular_layout()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Display the graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display(w)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Visualizing the result context of `graphrag` queries\n",
    "\n",
    "The result context of `graphrag` queries allow to inspect the context graph of the request. This data can similarly be visualized as graph with `yfiles-jupyter-graphs`.\n",
    "\n",
    "## Making the request\n",
    "\n",
    "The following cell recreates the sample queries from [local_search.ipynb](../../local_search.ipynb)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# setup (see also ../../local_search.ipynb)\n",
    "entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)\n",
    "\n",
    "description_embedding_store = LanceDBVectorStore(\n",
    "    collection_name=\"entity_description_embeddings\",\n",
    ")\n",
    "description_embedding_store.connect(db_uri=LANCEDB_URI)\n",
    "entity_description_embeddings = store_entity_semantic_embeddings(\n",
    "    entities=entities, vectorstore=description_embedding_store\n",
    ")\n",
    "covariate_df = pd.read_parquet(f\"{INPUT_DIR}/{COVARIATE_TABLE}.parquet\")\n",
    "claims = read_indexer_covariates(covariate_df)\n",
    "covariates = {\"claims\": claims}\n",
    "report_df = pd.read_parquet(f\"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet\")\n",
    "reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)\n",
    "text_unit_df = pd.read_parquet(f\"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet\")\n",
    "text_units = read_indexer_text_units(text_unit_df)\n",
    "\n",
    "api_key = os.environ[\"GRAPHRAG_API_KEY\"]\n",
    "llm_model = os.environ[\"GRAPHRAG_LLM_MODEL\"]\n",
    "embedding_model = os.environ[\"GRAPHRAG_EMBEDDING_MODEL\"]\n",
    "\n",
    "llm = ChatOpenAI(\n",
    "    api_key=api_key,\n",
    "    model=llm_model,\n",
    "    api_type=OpenaiApiType.OpenAI,  # OpenaiApiType.OpenAI or OpenaiApiType.AzureOpenAI\n",
    "    max_retries=20,\n",
    ")\n",
    "\n",
    "token_encoder = tiktoken.get_encoding(\"cl100k_base\")\n",
    "\n",
    "text_embedder = OpenAIEmbedding(\n",
    "    api_key=api_key,\n",
    "    api_base=None,\n",
    "    api_type=OpenaiApiType.OpenAI,\n",
    "    model=embedding_model,\n",
    "    deployment_name=embedding_model,\n",
    "    max_retries=20,\n",
    ")\n",
    "\n",
    "context_builder = LocalSearchMixedContext(\n",
    "    community_reports=reports,\n",
    "    text_units=text_units,\n",
    "    entities=entities,\n",
    "    relationships=relationships,\n",
    "    covariates=covariates,\n",
    "    entity_text_embeddings=description_embedding_store,\n",
    "    embedding_vectorstore_key=EntityVectorStoreKey.ID,  # if the vectorstore uses entity title as ids, set this to EntityVectorStoreKey.TITLE\n",
    "    text_embedder=text_embedder,\n",
    "    token_encoder=token_encoder,\n",
    ")\n",
    "\n",
    "local_context_params = {\n",
    "    \"text_unit_prop\": 0.5,\n",
    "    \"community_prop\": 0.1,\n",
    "    \"conversation_history_max_turns\": 5,\n",
    "    \"conversation_history_user_turns_only\": True,\n",
    "    \"top_k_mapped_entities\": 10,\n",
    "    \"top_k_relationships\": 10,\n",
    "    \"include_entity_rank\": True,\n",
    "    \"include_relationship_weight\": True,\n",
    "    \"include_community_rank\": False,\n",
    "    \"return_candidate_context\": False,\n",
    "    \"embedding_vectorstore_key\": EntityVectorStoreKey.ID,  # set this to EntityVectorStoreKey.TITLE if the vectorstore uses entity title as ids\n",
    "    \"max_tokens\": 12_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)\n",
    "}\n",
    "\n",
    "llm_params = {\n",
    "    \"max_tokens\": 2_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000=1500)\n",
    "    \"temperature\": 0.0,\n",
    "}\n",
    "\n",
    "search_engine = LocalSearch(\n",
    "    llm=llm,\n",
    "    context_builder=context_builder,\n",
    "    token_encoder=token_encoder,\n",
    "    llm_params=llm_params,\n",
    "    context_builder_params=local_context_params,\n",
    "    response_type=\"multiple paragraphs\",  # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run local search on sample queries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result = await search_engine.asearch(\"Tell me about Agent Mercer\")\n",
    "print(result.response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question = \"Tell me about Dr. Jordan Hayes\"\n",
    "result = await search_engine.asearch(question)\n",
    "print(result.response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inspecting the context data used to generate the response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"entities\"].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"relationships\"].head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Visualizing the result context as graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "Helper function to visualize the result context with `yfiles-jupyter-graphs`.\n",
    "\n",
    "The dataframes are converted into supported nodes and relationships lists and then passed to yfiles-jupyter-graphs.\n",
    "Additionally, some values are mapped to visualization properties.\n",
    "\"\"\"\n",
    "\n",
    "\n",
    "def show_graph(result):\n",
    "    \"\"\"Visualize the result context with yfiles-jupyter-graphs.\"\"\"\n",
    "    from yfiles_jupyter_graphs import GraphWidget\n",
    "\n",
    "    if (\n",
    "        \"entities\" not in result.context_data\n",
    "        or \"relationships\" not in result.context_data\n",
    "    ):\n",
    "        msg = \"The passed results do not contain 'entities' or 'relationships'\"\n",
    "        raise ValueError(msg)\n",
    "\n",
    "    # converts the entities dataframe to a list of dicts for yfiles-jupyter-graphs\n",
    "    def convert_entities_to_dicts(df):\n",
    "        \"\"\"Convert the entities dataframe to a list of dicts for yfiles-jupyter-graphs.\"\"\"\n",
    "        nodes_dict = {}\n",
    "        for _, row in df.iterrows():\n",
    "            # Create a dictionary for each row and collect unique nodes\n",
    "            node_id = row[\"entity\"]\n",
    "            if node_id not in nodes_dict:\n",
    "                nodes_dict[node_id] = {\n",
    "                    \"id\": node_id,\n",
    "                    \"properties\": row.to_dict(),\n",
    "                }\n",
    "        return list(nodes_dict.values())\n",
    "\n",
    "    # converts the relationships dataframe to a list of dicts for yfiles-jupyter-graphs\n",
    "    def convert_relationships_to_dicts(df):\n",
    "        \"\"\"Convert the relationships dataframe to a list of dicts for yfiles-jupyter-graphs.\"\"\"\n",
    "        relationships = []\n",
    "        for _, row in df.iterrows():\n",
    "            # Create a dictionary for each row\n",
    "            relationships.append({\n",
    "                \"start\": row[\"source\"],\n",
    "                \"end\": row[\"target\"],\n",
    "                \"properties\": row.to_dict(),\n",
    "            })\n",
    "        return relationships\n",
    "\n",
    "    w = GraphWidget()\n",
    "    # use the converted data to visualize the graph\n",
    "    w.nodes = convert_entities_to_dicts(result.context_data[\"entities\"])\n",
    "    w.edges = convert_relationships_to_dicts(result.context_data[\"relationships\"])\n",
    "    w.directed = True\n",
    "    # show title on the node\n",
    "    w.node_label_mapping = \"entity\"\n",
    "    # use weight for edge thickness\n",
    "    w.edge_thickness_factor_mapping = \"weight\"\n",
    "    display(w)\n",
    "\n",
    "\n",
    "show_graph(result)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}