Spaces:
Runtime error
Runtime error
File size: 8,596 Bytes
e331e72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nCopyright (c) Microsoft Corporation.\\n'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Copyright (c) 2024 Microsoft Corporation.\n",
"# Licensed under the MIT License."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"import tiktoken\n",
"\n",
"from graphrag.query.indexer_adapters import read_indexer_entities, read_indexer_reports\n",
"from graphrag.query.llm.oai.chat_openai import ChatOpenAI\n",
"from graphrag.query.llm.oai.typing import OpenaiApiType\n",
"from graphrag.query.structured_search.global_search.community_context import (\n",
" GlobalCommunityContext,\n",
")\n",
"from graphrag.query.structured_search.global_search.search import GlobalSearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Global Search example\n",
"\n",
"Global search method generates answers by searching over all AI-generated community reports in a map-reduce fashion. This is a resource-intensive method, but often gives good responses for questions that require an understanding of the dataset as a whole (e.g. What are the most significant values of the herbs mentioned in this notebook?)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### LLM setup"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"api_key = os.environ[\"GRAPHRAG_API_KEY\"]\n",
"llm_model = os.environ[\"GRAPHRAG_LLM_MODEL\"]\n",
"\n",
"llm = ChatOpenAI(\n",
" api_key=api_key,\n",
" model=llm_model,\n",
" api_type=OpenaiApiType.OpenAI, # OpenaiApiType.OpenAI or OpenaiApiType.AzureOpenAI\n",
" max_retries=20,\n",
")\n",
"\n",
"token_encoder = tiktoken.get_encoding(\"cl100k_base\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load community reports as context for global search\n",
"\n",
"- Load all community reports in the `create_final_community_reports` table from the ire-indexing engine, to be used as context data for global search.\n",
"- Load entities from the `create_final_nodes` and `create_final_entities` tables from the ire-indexing engine, to be used for calculating community weights for context ranking. Note that this is optional (if no entities are provided, we will not calculate community weights and only use the `rank` attribute in the community reports table for context ranking)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# parquet files generated from indexing pipeline\n",
"INPUT_DIR = \"./inputs/operation dulce\"\n",
"COMMUNITY_REPORT_TABLE = \"create_final_community_reports\"\n",
"ENTITY_TABLE = \"create_final_nodes\"\n",
"ENTITY_EMBEDDING_TABLE = \"create_final_entities\"\n",
"\n",
"# community level in the Leiden community hierarchy from which we will load the community reports\n",
"# higher value means we use reports from more fine-grained communities (at the cost of higher computation cost)\n",
"COMMUNITY_LEVEL = 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"entity_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_TABLE}.parquet\")\n",
"report_df = pd.read_parquet(f\"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet\")\n",
"entity_embedding_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet\")\n",
"\n",
"reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)\n",
"entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)\n",
"print(f\"Report records: {len(report_df)}\")\n",
"report_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build global context based on community reports"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"context_builder = GlobalCommunityContext(\n",
" community_reports=reports,\n",
" entities=entities, # default to None if you don't want to use community weights for ranking\n",
" token_encoder=token_encoder,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Perform global search"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"context_builder_params = {\n",
" \"use_community_summary\": False, # False means using full community reports. True means using community short summaries.\n",
" \"shuffle_data\": True,\n",
" \"include_community_rank\": True,\n",
" \"min_community_rank\": 0,\n",
" \"community_rank_name\": \"rank\",\n",
" \"include_community_weight\": True,\n",
" \"community_weight_name\": \"occurrence weight\",\n",
" \"normalize_community_weight\": True,\n",
" \"max_tokens\": 12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)\n",
" \"context_name\": \"Reports\",\n",
"}\n",
"\n",
"map_llm_params = {\n",
" \"max_tokens\": 1000,\n",
" \"temperature\": 0.0,\n",
" \"response_format\": {\"type\": \"json_object\"},\n",
"}\n",
"\n",
"reduce_llm_params = {\n",
" \"max_tokens\": 2000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000-1500)\n",
" \"temperature\": 0.0,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"search_engine = GlobalSearch(\n",
" llm=llm,\n",
" context_builder=context_builder,\n",
" token_encoder=token_encoder,\n",
" max_data_tokens=12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)\n",
" map_llm_params=map_llm_params,\n",
" reduce_llm_params=reduce_llm_params,\n",
" allow_general_knowledge=False, # set this to True will add instruction to encourage the LLM to incorporate general knowledge in the response, which may increase hallucinations, but could be useful in some use cases.\n",
" json_mode=True, # set this to False if your LLM model does not support JSON mode.\n",
" context_builder_params=context_builder_params,\n",
" concurrent_coroutines=32,\n",
" response_type=\"multiple paragraphs\", # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"result = await search_engine.asearch(\n",
" \"What is the major conflict in this story and who are the protagonist and antagonist?\"\n",
")\n",
"\n",
"print(result.response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# inspect the data used to build the context for the LLM responses\n",
"result.context_data[\"reports\"]"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LLM calls: 13. LLM tokens: 184660\n"
]
}
],
"source": [
"# inspect number of LLM calls and tokens\n",
"print(f\"LLM calls: {result.llm_calls}. LLM tokens: {result.prompt_tokens}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|