File size: 11,098 Bytes
e331e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import asyncio
import json
import logging
import os
import shutil
import subprocess
from collections.abc import Callable
from functools import wraps
from pathlib import Path
from typing import Any, ClassVar
from unittest import mock

import pandas as pd
import pytest

from graphrag.index.storage.blob_pipeline_storage import BlobPipelineStorage

log = logging.getLogger(__name__)

debug = os.environ.get("DEBUG") is not None
gh_pages = os.environ.get("GH_PAGES") is not None

# cspell:disable-next-line well-known-key
WELL_KNOWN_AZURITE_CONNECTION_STRING = "DefaultEndpointsProtocol=http;AccountName=devstoreaccount1;AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==;BlobEndpoint=http://127.0.0.1:10000/devstoreaccount1"


def _load_fixtures():
    """Load all fixtures from the tests/data folder."""
    params = []
    fixtures_path = Path("./tests/fixtures/")
    # use the min-csv smoke test to hydrate the docsite parquet artifacts (see gh-pages.yml)
    subfolders = ["min-csv"] if gh_pages else sorted(os.listdir(fixtures_path))

    for subfolder in subfolders:
        if not os.path.isdir(fixtures_path / subfolder):
            continue

        config_file = fixtures_path / subfolder / "config.json"
        with config_file.open() as f:
            params.append((subfolder, json.load(f)))

    return params


def pytest_generate_tests(metafunc):
    """Generate tests for all test functions in this module."""
    run_slow = metafunc.config.getoption("run_slow")
    configs = metafunc.cls.params[metafunc.function.__name__]

    if not run_slow:
        # Only run tests that are not marked as slow
        configs = [config for config in configs if not config[1].get("slow", False)]

    funcarglist = [params[1] for params in configs]
    id_list = [params[0] for params in configs]

    argnames = sorted(arg for arg in funcarglist[0] if arg != "slow")
    metafunc.parametrize(
        argnames,
        [[funcargs[name] for name in argnames] for funcargs in funcarglist],
        ids=id_list,
    )


def cleanup(skip: bool = False):
    """Decorator to cleanup the output and cache folders after each test."""

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            try:
                return func(*args, **kwargs)
            except AssertionError:
                raise
            finally:
                if not skip:
                    root = Path(kwargs["input_path"])
                    shutil.rmtree(root / "output", ignore_errors=True)
                    shutil.rmtree(root / "cache", ignore_errors=True)

        return wrapper

    return decorator


async def prepare_azurite_data(input_path: str, azure: dict) -> Callable[[], None]:
    """Prepare the data for the Azurite tests."""
    input_container = azure["input_container"]
    input_base_dir = azure.get("input_base_dir")

    root = Path(input_path)
    input_storage = BlobPipelineStorage(
        connection_string=WELL_KNOWN_AZURITE_CONNECTION_STRING,
        container_name=input_container,
    )
    # Bounce the container if it exists to clear out old run data
    input_storage.delete_container()
    input_storage.create_container()

    # Upload data files
    txt_files = list((root / "input").glob("*.txt"))
    csv_files = list((root / "input").glob("*.csv"))
    data_files = txt_files + csv_files
    for data_file in data_files:
        with data_file.open(encoding="utf8") as f:
            text = f.read()
        file_path = (
            str(Path(input_base_dir) / data_file.name)
            if input_base_dir
            else data_file.name
        )
        await input_storage.set(file_path, text, encoding="utf-8")

    return lambda: input_storage.delete_container()


class TestIndexer:
    params: ClassVar[dict[str, list[tuple[str, dict[str, Any]]]]] = {
        "test_fixture": _load_fixtures()
    }

    def __run_indexer(
        self,
        root: Path,
        input_file_type: str,
    ):
        command = [
            "poetry",
            "run",
            "poe",
            "index",
            "--verbose" if debug else None,
            "--root",
            root.absolute().as_posix(),
            "--reporter",
            "print",
        ]
        command = [arg for arg in command if arg]
        log.info("running command ", " ".join(command))
        completion = subprocess.run(
            command, env={**os.environ, "GRAPHRAG_INPUT_FILE_TYPE": input_file_type}
        )
        assert (
            completion.returncode == 0
        ), f"Indexer failed with return code: {completion.returncode}"

    def __assert_indexer_outputs(
        self, root: Path, workflow_config: dict[str, dict[str, Any]]
    ):
        outputs_path = root / "output"
        output_entries = list(outputs_path.iterdir())
        # Sort the output folders by creation time, most recent
        output_entries.sort(key=lambda entry: entry.stat().st_ctime, reverse=True)

        if not debug:
            assert (
                len(output_entries) == 1
            ), f"Expected one output folder, found {len(output_entries)}"

        output_path = output_entries[0]
        assert output_path.exists(), "output folder does not exist"

        artifacts = output_path / "artifacts"
        assert artifacts.exists(), "artifact folder does not exist"

        # Check stats for all workflow
        with (artifacts / "stats.json").open() as f:
            stats = json.load(f)

        # Check all workflows run
        expected_workflows = set(workflow_config.keys())
        workflows = set(stats["workflows"].keys())
        assert (
            workflows == expected_workflows
        ), f"Workflows missing from stats.json: {expected_workflows - workflows}. Unexpected workflows in stats.json: {workflows - expected_workflows}"

        # [OPTIONAL] Check subworkflows
        for workflow in expected_workflows:
            if "subworkflows" in workflow_config[workflow]:
                # Check number of subworkflows
                subworkflows = stats["workflows"][workflow]
                expected_subworkflows = workflow_config[workflow].get(
                    "subworkflows", None
                )
                if expected_subworkflows:
                    assert (
                        len(subworkflows) - 1 == expected_subworkflows
                    ), f"Expected {expected_subworkflows} subworkflows, found: {len(subworkflows) - 1} for workflow: {workflow}: [{subworkflows}]"

                # Check max runtime
                max_runtime = workflow_config[workflow].get("max_runtime", None)
                if max_runtime:
                    assert (
                        stats["workflows"][workflow]["overall"] <= max_runtime
                    ), f"Expected max runtime of {max_runtime}, found: {stats['workflows'][workflow]['overall']} for workflow: {workflow}"

        # Check artifacts
        artifact_files = os.listdir(artifacts)
        assert (
            len(artifact_files) == len(expected_workflows) + 1
        ), f"Expected {len(expected_workflows) + 1} artifacts, found: {len(artifact_files)}"

        for artifact in artifact_files:
            if artifact.endswith(".parquet"):
                output_df = pd.read_parquet(artifacts / artifact)
                artifact_name = artifact.split(".")[0]
                workflow = workflow_config[artifact_name]

                # Check number of rows between range
                assert (
                    workflow["row_range"][0]
                    <= len(output_df)
                    <= workflow["row_range"][1]
                ), f"Expected between {workflow['row_range'][0]} and {workflow['row_range'][1]}, found: {len(output_df)} for file: {artifact}"

                # Get non-nan rows
                nan_df = output_df.loc[
                    :, ~output_df.columns.isin(workflow.get("nan_allowed_columns", []))
                ]
                nan_df = nan_df[nan_df.isna().any(axis=1)]
                assert (
                    len(nan_df) == 0
                ), f"Found {len(nan_df)} rows with NaN values for file: {artifact} on columns: {nan_df.columns[nan_df.isna().any()].tolist()}"

    def __run_query(self, root: Path, query_config: dict[str, str]):
        command = [
            "poetry",
            "run",
            "poe",
            "query",
            "--root",
            root.absolute().as_posix(),
            "--method",
            query_config["method"],
            "--community_level",
            str(query_config.get("community_level", 2)),
            query_config["query"],
        ]

        log.info("running command ", " ".join(command))
        return subprocess.run(command, capture_output=True, text=True)

    @cleanup(skip=debug)
    @mock.patch.dict(
        os.environ,
        {
            **os.environ,
            "BLOB_STORAGE_CONNECTION_STRING": os.getenv(
                "GRAPHRAG_CACHE_CONNECTION_STRING", WELL_KNOWN_AZURITE_CONNECTION_STRING
            ),
            "LOCAL_BLOB_STORAGE_CONNECTION_STRING": WELL_KNOWN_AZURITE_CONNECTION_STRING,
            "GRAPHRAG_CHUNK_SIZE": "1200",
            "GRAPHRAG_CHUNK_OVERLAP": "0",
            "AZURE_AI_SEARCH_URL_ENDPOINT": os.getenv("AZURE_AI_SEARCH_URL_ENDPOINT"),
            "AZURE_AI_SEARCH_API_KEY": os.getenv("AZURE_AI_SEARCH_API_KEY"),
        },
        clear=True,
    )
    @pytest.mark.timeout(600)  # Extend the timeout to 600 seconds (10 minutes)
    def test_fixture(
        self,
        input_path: str,
        input_file_type: str,
        workflow_config: dict[str, dict[str, Any]],
        query_config: list[dict[str, str]],
    ):
        if workflow_config.get("skip", False):
            print(f"skipping smoke test {input_path})")
            return

        azure = workflow_config.get("azure")
        root = Path(input_path)
        dispose = None
        if azure is not None:
            dispose = asyncio.run(prepare_azurite_data(input_path, azure))

        print("running indexer")
        self.__run_indexer(root, input_file_type)
        print("indexer complete")

        if dispose is not None:
            dispose()

        if not workflow_config.get("skip_assert", False):
            print("performing dataset assertions")
            self.__assert_indexer_outputs(root, workflow_config)

        print("running queries")
        for query in query_config:
            result = self.__run_query(root, query)
            print(f"Query: {query}\nResponse: {result.stdout}")

            # Check stderr because lancedb logs path creating as WARN which leads to false negatives
            stderror = (
                result.stderr if "No existing dataset at" not in result.stderr else ""
            )

            assert stderror == "", f"Query failed with error: {stderror}"
            assert result.stdout is not None, "Query returned no output"
            assert len(result.stdout) > 0, "Query returned empty output"