Spaces:
Runtime error
Runtime error
File size: 11,098 Bytes
e331e72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import asyncio
import json
import logging
import os
import shutil
import subprocess
from collections.abc import Callable
from functools import wraps
from pathlib import Path
from typing import Any, ClassVar
from unittest import mock
import pandas as pd
import pytest
from graphrag.index.storage.blob_pipeline_storage import BlobPipelineStorage
log = logging.getLogger(__name__)
debug = os.environ.get("DEBUG") is not None
gh_pages = os.environ.get("GH_PAGES") is not None
# cspell:disable-next-line well-known-key
WELL_KNOWN_AZURITE_CONNECTION_STRING = "DefaultEndpointsProtocol=http;AccountName=devstoreaccount1;AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==;BlobEndpoint=http://127.0.0.1:10000/devstoreaccount1"
def _load_fixtures():
"""Load all fixtures from the tests/data folder."""
params = []
fixtures_path = Path("./tests/fixtures/")
# use the min-csv smoke test to hydrate the docsite parquet artifacts (see gh-pages.yml)
subfolders = ["min-csv"] if gh_pages else sorted(os.listdir(fixtures_path))
for subfolder in subfolders:
if not os.path.isdir(fixtures_path / subfolder):
continue
config_file = fixtures_path / subfolder / "config.json"
with config_file.open() as f:
params.append((subfolder, json.load(f)))
return params
def pytest_generate_tests(metafunc):
"""Generate tests for all test functions in this module."""
run_slow = metafunc.config.getoption("run_slow")
configs = metafunc.cls.params[metafunc.function.__name__]
if not run_slow:
# Only run tests that are not marked as slow
configs = [config for config in configs if not config[1].get("slow", False)]
funcarglist = [params[1] for params in configs]
id_list = [params[0] for params in configs]
argnames = sorted(arg for arg in funcarglist[0] if arg != "slow")
metafunc.parametrize(
argnames,
[[funcargs[name] for name in argnames] for funcargs in funcarglist],
ids=id_list,
)
def cleanup(skip: bool = False):
"""Decorator to cleanup the output and cache folders after each test."""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except AssertionError:
raise
finally:
if not skip:
root = Path(kwargs["input_path"])
shutil.rmtree(root / "output", ignore_errors=True)
shutil.rmtree(root / "cache", ignore_errors=True)
return wrapper
return decorator
async def prepare_azurite_data(input_path: str, azure: dict) -> Callable[[], None]:
"""Prepare the data for the Azurite tests."""
input_container = azure["input_container"]
input_base_dir = azure.get("input_base_dir")
root = Path(input_path)
input_storage = BlobPipelineStorage(
connection_string=WELL_KNOWN_AZURITE_CONNECTION_STRING,
container_name=input_container,
)
# Bounce the container if it exists to clear out old run data
input_storage.delete_container()
input_storage.create_container()
# Upload data files
txt_files = list((root / "input").glob("*.txt"))
csv_files = list((root / "input").glob("*.csv"))
data_files = txt_files + csv_files
for data_file in data_files:
with data_file.open(encoding="utf8") as f:
text = f.read()
file_path = (
str(Path(input_base_dir) / data_file.name)
if input_base_dir
else data_file.name
)
await input_storage.set(file_path, text, encoding="utf-8")
return lambda: input_storage.delete_container()
class TestIndexer:
params: ClassVar[dict[str, list[tuple[str, dict[str, Any]]]]] = {
"test_fixture": _load_fixtures()
}
def __run_indexer(
self,
root: Path,
input_file_type: str,
):
command = [
"poetry",
"run",
"poe",
"index",
"--verbose" if debug else None,
"--root",
root.absolute().as_posix(),
"--reporter",
"print",
]
command = [arg for arg in command if arg]
log.info("running command ", " ".join(command))
completion = subprocess.run(
command, env={**os.environ, "GRAPHRAG_INPUT_FILE_TYPE": input_file_type}
)
assert (
completion.returncode == 0
), f"Indexer failed with return code: {completion.returncode}"
def __assert_indexer_outputs(
self, root: Path, workflow_config: dict[str, dict[str, Any]]
):
outputs_path = root / "output"
output_entries = list(outputs_path.iterdir())
# Sort the output folders by creation time, most recent
output_entries.sort(key=lambda entry: entry.stat().st_ctime, reverse=True)
if not debug:
assert (
len(output_entries) == 1
), f"Expected one output folder, found {len(output_entries)}"
output_path = output_entries[0]
assert output_path.exists(), "output folder does not exist"
artifacts = output_path / "artifacts"
assert artifacts.exists(), "artifact folder does not exist"
# Check stats for all workflow
with (artifacts / "stats.json").open() as f:
stats = json.load(f)
# Check all workflows run
expected_workflows = set(workflow_config.keys())
workflows = set(stats["workflows"].keys())
assert (
workflows == expected_workflows
), f"Workflows missing from stats.json: {expected_workflows - workflows}. Unexpected workflows in stats.json: {workflows - expected_workflows}"
# [OPTIONAL] Check subworkflows
for workflow in expected_workflows:
if "subworkflows" in workflow_config[workflow]:
# Check number of subworkflows
subworkflows = stats["workflows"][workflow]
expected_subworkflows = workflow_config[workflow].get(
"subworkflows", None
)
if expected_subworkflows:
assert (
len(subworkflows) - 1 == expected_subworkflows
), f"Expected {expected_subworkflows} subworkflows, found: {len(subworkflows) - 1} for workflow: {workflow}: [{subworkflows}]"
# Check max runtime
max_runtime = workflow_config[workflow].get("max_runtime", None)
if max_runtime:
assert (
stats["workflows"][workflow]["overall"] <= max_runtime
), f"Expected max runtime of {max_runtime}, found: {stats['workflows'][workflow]['overall']} for workflow: {workflow}"
# Check artifacts
artifact_files = os.listdir(artifacts)
assert (
len(artifact_files) == len(expected_workflows) + 1
), f"Expected {len(expected_workflows) + 1} artifacts, found: {len(artifact_files)}"
for artifact in artifact_files:
if artifact.endswith(".parquet"):
output_df = pd.read_parquet(artifacts / artifact)
artifact_name = artifact.split(".")[0]
workflow = workflow_config[artifact_name]
# Check number of rows between range
assert (
workflow["row_range"][0]
<= len(output_df)
<= workflow["row_range"][1]
), f"Expected between {workflow['row_range'][0]} and {workflow['row_range'][1]}, found: {len(output_df)} for file: {artifact}"
# Get non-nan rows
nan_df = output_df.loc[
:, ~output_df.columns.isin(workflow.get("nan_allowed_columns", []))
]
nan_df = nan_df[nan_df.isna().any(axis=1)]
assert (
len(nan_df) == 0
), f"Found {len(nan_df)} rows with NaN values for file: {artifact} on columns: {nan_df.columns[nan_df.isna().any()].tolist()}"
def __run_query(self, root: Path, query_config: dict[str, str]):
command = [
"poetry",
"run",
"poe",
"query",
"--root",
root.absolute().as_posix(),
"--method",
query_config["method"],
"--community_level",
str(query_config.get("community_level", 2)),
query_config["query"],
]
log.info("running command ", " ".join(command))
return subprocess.run(command, capture_output=True, text=True)
@cleanup(skip=debug)
@mock.patch.dict(
os.environ,
{
**os.environ,
"BLOB_STORAGE_CONNECTION_STRING": os.getenv(
"GRAPHRAG_CACHE_CONNECTION_STRING", WELL_KNOWN_AZURITE_CONNECTION_STRING
),
"LOCAL_BLOB_STORAGE_CONNECTION_STRING": WELL_KNOWN_AZURITE_CONNECTION_STRING,
"GRAPHRAG_CHUNK_SIZE": "1200",
"GRAPHRAG_CHUNK_OVERLAP": "0",
"AZURE_AI_SEARCH_URL_ENDPOINT": os.getenv("AZURE_AI_SEARCH_URL_ENDPOINT"),
"AZURE_AI_SEARCH_API_KEY": os.getenv("AZURE_AI_SEARCH_API_KEY"),
},
clear=True,
)
@pytest.mark.timeout(600) # Extend the timeout to 600 seconds (10 minutes)
def test_fixture(
self,
input_path: str,
input_file_type: str,
workflow_config: dict[str, dict[str, Any]],
query_config: list[dict[str, str]],
):
if workflow_config.get("skip", False):
print(f"skipping smoke test {input_path})")
return
azure = workflow_config.get("azure")
root = Path(input_path)
dispose = None
if azure is not None:
dispose = asyncio.run(prepare_azurite_data(input_path, azure))
print("running indexer")
self.__run_indexer(root, input_file_type)
print("indexer complete")
if dispose is not None:
dispose()
if not workflow_config.get("skip_assert", False):
print("performing dataset assertions")
self.__assert_indexer_outputs(root, workflow_config)
print("running queries")
for query in query_config:
result = self.__run_query(root, query)
print(f"Query: {query}\nResponse: {result.stdout}")
# Check stderr because lancedb logs path creating as WARN which leads to false negatives
stderror = (
result.stderr if "No existing dataset at" not in result.stderr else ""
)
assert stderror == "", f"Query failed with error: {stderror}"
assert result.stdout is not None, "Query returned no output"
assert len(result.stdout) > 0, "Query returned empty output"
|