Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Microsoft Corporation. | |
# Licensed under the MIT License | |
import asyncio | |
import os | |
import pandas as pd | |
from examples.custom_set_of_available_workflows.custom_workflow_definitions import ( | |
custom_workflows, | |
) | |
from graphrag.index import run_pipeline, run_pipeline_with_config | |
from graphrag.index.config import PipelineWorkflowReference | |
sample_data_dir = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "../_sample_data/" | |
) | |
# our fake dataset | |
dataset = pd.DataFrame([{"col1": 2, "col2": 4}, {"col1": 5, "col2": 10}]) | |
async def run_with_config(): | |
"""Run a pipeline with a config file""" | |
# load pipeline.yml in this directory | |
config_path = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "./pipeline.yml" | |
) | |
# Grab the last result from the pipeline, should be our entity extraction | |
tables = [] | |
async for table in run_pipeline_with_config( | |
config_or_path=config_path, | |
dataset=dataset, | |
additional_workflows=custom_workflows, | |
): | |
tables.append(table) | |
pipeline_result = tables[-1] | |
if pipeline_result.result is not None: | |
# Should look something like this: | |
# col1 col2 col_1_multiplied | |
# 0 2 4 8 | |
# 1 5 10 50 | |
print(pipeline_result.result) | |
else: | |
print("No results!") | |
async def run_python(): | |
"""Run a pipeline using the python API""" | |
# Define the actual workflows to be run, this is identical to the python api | |
# but we're defining the workflows to be run via python instead of via a config file | |
workflows: list[PipelineWorkflowReference] = [ | |
# run my_workflow against the dataset, notice we're only using the "my_workflow" workflow | |
# and not the "my_unused_workflow" workflow | |
PipelineWorkflowReference( | |
name="my_workflow", # should match the name of the workflow in the custom_workflows dict above | |
config={ # pass in a config | |
# set the derive_output_column to be "col_1_multiplied", this will be passed to the workflow definition above | |
"derive_output_column": "col_1_multiplied" | |
}, | |
), | |
] | |
# Grab the last result from the pipeline, should be our entity extraction | |
tables = [] | |
async for table in run_pipeline( | |
workflows, dataset=dataset, additional_workflows=custom_workflows | |
): | |
tables.append(table) | |
pipeline_result = tables[-1] | |
if pipeline_result.result is not None: | |
# Should look something like this: | |
# col1 col2 col_1_multiplied | |
# 0 2 4 8 | |
# 1 5 10 50 | |
print(pipeline_result.result) | |
else: | |
print("No results!") | |
if __name__ == "__main__": | |
asyncio.run(run_python()) | |
asyncio.run(run_with_config()) | |