Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Microsoft Corporation. | |
# Licensed under the MIT License | |
import asyncio | |
import os | |
from graphrag.index import run_pipeline, run_pipeline_with_config | |
from graphrag.index.config import PipelineCSVInputConfig, PipelineWorkflowReference | |
from graphrag.index.input import load_input | |
sample_data_dir = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "../_sample_data/" | |
) | |
# Load our dataset once | |
shared_dataset = asyncio.run( | |
load_input( | |
PipelineCSVInputConfig( | |
file_pattern=".*\\.csv$", | |
base_dir=sample_data_dir, | |
source_column="author", | |
text_column="message", | |
timestamp_column="date(yyyyMMddHHmmss)", | |
timestamp_format="%Y%m%d%H%M%S", | |
title_column="message", | |
), | |
) | |
) | |
async def run_with_config(): | |
"""Run a pipeline with a config file""" | |
# We're cheap, and this is an example, lets just do 10 | |
dataset = shared_dataset.head(10) | |
# load pipeline.yml in this directory | |
config_path = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "./pipeline.yml" | |
) | |
# Grab the last result from the pipeline, should be our entity extraction | |
tables = [] | |
async for table in run_pipeline_with_config( | |
config_or_path=config_path, dataset=dataset | |
): | |
tables.append(table) | |
pipeline_result = tables[-1] | |
if pipeline_result.result is not None: | |
# The output of this should match the run_python() example | |
first_result = pipeline_result.result.head(1) | |
print(f"level: {first_result['level'][0]}") | |
print(f"embeddings: {first_result['embeddings'][0]}") | |
print(f"entity_graph_positions: {first_result['node_positions'][0]}") | |
else: | |
print("No results!") | |
async def run_python(): | |
# We're cheap, and this is an example, lets just do 10 | |
dataset = shared_dataset.head(10) | |
workflows: list[PipelineWorkflowReference] = [ | |
# This workflow reference here is only necessary | |
# because we want to customize the entity_extraction workflow is configured | |
# otherwise, it can be omitted, but you're stuck with the default configuration for entity_extraction | |
PipelineWorkflowReference( | |
name="entity_extraction", | |
config={ | |
"entity_extract": { | |
"strategy": { | |
"type": "nltk", | |
} | |
} | |
}, | |
), | |
PipelineWorkflowReference( | |
name="entity_graph", | |
config={ | |
"cluster_graph": {"strategy": {"type": "leiden"}}, | |
"embed_graph": { | |
"strategy": { | |
"type": "node2vec", | |
"num_walks": 10, | |
"walk_length": 40, | |
"window_size": 2, | |
"iterations": 3, | |
"random_seed": 597832, | |
} | |
}, | |
"layout_graph": { | |
"strategy": { | |
"type": "umap", | |
}, | |
}, | |
}, | |
), | |
] | |
# Grab the last result from the pipeline, should be our entity extraction | |
tables = [] | |
async for table in run_pipeline(dataset=dataset, workflows=workflows): | |
tables.append(table) | |
pipeline_result = tables[-1] | |
# The output will contain entity graphs per hierarchical level, with embeddings per entity | |
if pipeline_result.result is not None: | |
first_result = pipeline_result.result.head(1) | |
print(f"level: {first_result['level'][0]}") | |
print(f"embeddings: {first_result['embeddings'][0]}") | |
print(f"entity_graph_positions: {first_result['node_positions'][0]}") | |
else: | |
print("No results!") | |
if __name__ == "__main__": | |
asyncio.run(run_python()) | |
asyncio.run(run_with_config()) | |