# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License import unittest import networkx as nx from graphrag.index.graph.utils.stable_lcc import stable_largest_connected_component class TestStableLCC(unittest.TestCase): def test_undirected_graph_run_twice_produces_same_graph(self): graph_in_1 = self._create_strongly_connected_graph() graph_out_1 = stable_largest_connected_component(graph_in_1) graph_in_2 = self._create_strongly_connected_graph_with_edges_flipped() graph_out_2 = stable_largest_connected_component(graph_in_2) # Make sure they're the same assert "".join(nx.generate_graphml(graph_out_1)) == "".join( nx.generate_graphml(graph_out_2) ) def test_directed_graph_keeps_source_target_intact(self): # create the test graph as a directed graph graph_in = self._create_strongly_connected_graph_with_edges_flipped( digraph=True ) graph_out = stable_largest_connected_component(graph_in.copy()) # Make sure edges are the same and the direction is preserved edges_1 = [f"{edge[0]} -> {edge[1]}" for edge in graph_in.edges(data=True)] edges_2 = [f"{edge[0]} -> {edge[1]}" for edge in graph_out.edges(data=True)] assert edges_1 == edges_2 def test_directed_graph_run_twice_produces_same_graph(self): # create the test graph as a directed graph graph_in = self._create_strongly_connected_graph_with_edges_flipped( digraph=True ) graph_out_1 = stable_largest_connected_component(graph_in.copy()) graph_out_2 = stable_largest_connected_component(graph_in.copy()) # Make sure the output is identical when run multiple times assert "".join(nx.generate_graphml(graph_out_1)) == "".join( nx.generate_graphml(graph_out_2) ) def _create_strongly_connected_graph(self, digraph=False): graph = nx.Graph() if not digraph else nx.DiGraph() graph.add_node("1", node_name=1) graph.add_node("2", node_name=2) graph.add_node("3", node_name=3) graph.add_node("4", node_name=4) graph.add_edge("4", "5", degree=4) graph.add_edge("3", "4", degree=3) graph.add_edge("2", "3", degree=2) graph.add_edge("1", "2", degree=1) return graph def _create_strongly_connected_graph_with_edges_flipped(self, digraph=False): graph = nx.Graph() if not digraph else nx.DiGraph() graph.add_node("1", node_name=1) graph.add_node("2", node_name=2) graph.add_node("3", node_name=3) graph.add_node("4", node_name=4) graph.add_edge("5", "4", degree=4) graph.add_edge("4", "3", degree=3) graph.add_edge("3", "2", degree=2) graph.add_edge("2", "1", degree=1) return graph