# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License import asyncio import os from graphrag.index import run_pipeline_with_config from graphrag.index.config import PipelineCSVInputConfig from graphrag.index.input import load_input sample_data_dir = os.path.join( os.path.dirname(os.path.abspath(__file__)), "./../_sample_data/" ) async def run_with_config(): dataset = await load_input( PipelineCSVInputConfig( file_pattern=".*\\.csv$", base_dir=sample_data_dir, source_column="author", text_column="message", timestamp_column="date(yyyyMMddHHmmss)", timestamp_format="%Y%m%d%H%M%S", title_column="message", ), ) # We're cheap, and this is an example, lets just do 10 dataset = dataset.head(2) # run the pipeline with the config, and override the dataset with the one we just created # and grab the last result from the pipeline, should be the last workflow that was run (our nodes) pipeline_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "./pipeline.yml" ) async for result in run_pipeline_with_config(pipeline_path, dataset=dataset): print(f"Workflow {result.workflow} result\n: ") print(result.result) if __name__ == "__main__": asyncio.run(run_with_config())