Update app.py
Browse files
app.py
CHANGED
@@ -2,77 +2,93 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Initialize model and tokenizer globally
|
7 |
def load_model():
|
8 |
-
|
|
|
9 |
try:
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
model_name,
|
13 |
device_map="auto",
|
14 |
trust_remote_code=True,
|
15 |
-
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
return model, tokenizer
|
18 |
except Exception as e:
|
19 |
print(f"Error loading model: {str(e)}")
|
20 |
return None, None
|
21 |
|
|
|
|
|
22 |
model, tokenizer = load_model()
|
|
|
23 |
|
24 |
def generate_code(prompt):
|
25 |
try:
|
26 |
-
|
27 |
-
if torch.cuda.is_available():
|
28 |
-
torch.cuda.empty_cache()
|
29 |
-
gc.collect()
|
30 |
|
31 |
# Prepare the prompt
|
32 |
messages = [
|
33 |
-
{"role": "system", "content": "You are an expert Python developer. Generate clean, efficient, and well-commented code based on the user's requirements."},
|
34 |
{"role": "user", "content": f"Create a Python tool for the following requirement: {prompt}"}
|
35 |
]
|
36 |
|
37 |
-
# Format the messages using the chat template
|
38 |
-
text = tokenizer.apply_chat_template(
|
39 |
-
messages,
|
40 |
-
tokenize=False,
|
41 |
-
add_generation_prompt=True
|
42 |
-
)
|
43 |
-
|
44 |
# Generate the response
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
temperature=0.7,
|
50 |
top_p=0.9,
|
51 |
repetition_penalty=1.1,
|
52 |
-
do_sample=True
|
|
|
|
|
53 |
)
|
54 |
|
55 |
-
|
56 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
57 |
|
58 |
-
# Extract
|
59 |
code_start = response.find("```python")
|
60 |
-
code_end = response.find("```", code_start + 8)
|
61 |
|
62 |
if code_start != -1 and code_end != -1:
|
63 |
code = response[code_start + 8:code_end].strip()
|
64 |
else:
|
65 |
-
code
|
66 |
-
|
|
|
|
|
|
|
67 |
return code
|
68 |
|
69 |
except Exception as e:
|
|
|
70 |
raise gr.Error(f"Code generation failed: {str(e)}")
|
71 |
-
finally:
|
72 |
-
# Clear memory
|
73 |
-
if torch.cuda.is_available():
|
74 |
-
torch.cuda.empty_cache()
|
75 |
-
gc.collect()
|
76 |
|
77 |
# Create the Gradio interface
|
78 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
|
@@ -80,7 +96,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
|
|
80 |
"""
|
81 |
# 🛠️ AI Tool Builder by Syncmerce
|
82 |
|
83 |
-
Generate
|
84 |
"""
|
85 |
)
|
86 |
|
@@ -99,17 +115,16 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
|
|
99 |
code_output = gr.Code(
|
100 |
label="Generated Code",
|
101 |
language="python",
|
102 |
-
lines=
|
103 |
show_label=True
|
104 |
)
|
105 |
|
106 |
-
# Add examples
|
107 |
gr.Examples(
|
108 |
examples=[
|
109 |
-
["Create a PDF text extractor
|
110 |
-
["Build a web scraper
|
111 |
-
["Create an image
|
112 |
-
["Build a YouTube video downloader with progress bar and quality selection"],
|
113 |
],
|
114 |
inputs=prompt_input,
|
115 |
outputs=code_output,
|
@@ -132,23 +147,22 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
|
|
132 |
api_name="clear"
|
133 |
)
|
134 |
|
135 |
-
# Add footer
|
136 |
gr.Markdown(
|
137 |
"""
|
138 |
### Tips for better results:
|
139 |
-
-
|
140 |
-
-
|
141 |
-
-
|
142 |
-
|
143 |
-
*Note: Generated code may need minor adjustments based on your specific use case.*
|
144 |
"""
|
145 |
)
|
146 |
|
147 |
-
# Launch the app
|
148 |
demo.launch(
|
149 |
share=True,
|
150 |
enable_queue=True,
|
151 |
show_error=True,
|
152 |
server_name="0.0.0.0",
|
153 |
-
server_port=7860
|
|
|
|
|
154 |
)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gc
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Set environment variables for cache management
|
8 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache/huggingface'
|
9 |
+
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
|
10 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
11 |
+
|
12 |
+
def cleanup_memory():
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
torch.cuda.empty_cache()
|
15 |
+
torch.cuda.synchronize()
|
16 |
+
gc.collect()
|
17 |
|
|
|
18 |
def load_model():
|
19 |
+
cleanup_memory()
|
20 |
+
model_name = "Qwen/Qwen1.5-0.5B" # Using smaller model
|
21 |
try:
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
trust_remote_code=True,
|
25 |
+
use_fast=False,
|
26 |
+
cache_dir="/tmp/.cache/huggingface"
|
27 |
+
)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
model_name,
|
30 |
device_map="auto",
|
31 |
trust_remote_code=True,
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
low_cpu_mem_usage=True,
|
34 |
+
offload_folder="/tmp/offload",
|
35 |
+
offload_state_dict=True,
|
36 |
+
cache_dir="/tmp/.cache/huggingface"
|
37 |
)
|
38 |
return model, tokenizer
|
39 |
except Exception as e:
|
40 |
print(f"Error loading model: {str(e)}")
|
41 |
return None, None
|
42 |
|
43 |
+
# Initialize model and tokenizer
|
44 |
+
print("Loading model...")
|
45 |
model, tokenizer = load_model()
|
46 |
+
print("Model loaded successfully!")
|
47 |
|
48 |
def generate_code(prompt):
|
49 |
try:
|
50 |
+
cleanup_memory()
|
|
|
|
|
|
|
51 |
|
52 |
# Prepare the prompt
|
53 |
messages = [
|
54 |
+
{"role": "system", "content": "You are an expert Python developer. Generate clean, efficient, and well-commented code based on the user's requirements. Only provide the code without any explanations."},
|
55 |
{"role": "user", "content": f"Create a Python tool for the following requirement: {prompt}"}
|
56 |
]
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# Generate the response
|
59 |
+
inputs = tokenizer.encode(str(messages), return_tensors="pt", truncation=True, max_length=512)
|
60 |
+
inputs = inputs.to(model.device)
|
61 |
+
|
62 |
+
outputs = model.generate(
|
63 |
+
inputs,
|
64 |
+
max_length=1024,
|
65 |
temperature=0.7,
|
66 |
top_p=0.9,
|
67 |
repetition_penalty=1.1,
|
68 |
+
do_sample=True,
|
69 |
+
pad_token_id=tokenizer.eos_token_id,
|
70 |
+
num_return_sequences=1
|
71 |
)
|
72 |
|
73 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
74 |
|
75 |
+
# Extract code from response
|
76 |
code_start = response.find("```python")
|
77 |
+
code_end = response.find("```", code_start + 8) if code_start != -1 else -1
|
78 |
|
79 |
if code_start != -1 and code_end != -1:
|
80 |
code = response[code_start + 8:code_end].strip()
|
81 |
else:
|
82 |
+
# If no code block found, try to extract any Python-like code
|
83 |
+
code = "\n".join([line for line in response.split("\n")
|
84 |
+
if line.strip() and not line.startswith(("#", "//", "/*"))])
|
85 |
+
|
86 |
+
cleanup_memory()
|
87 |
return code
|
88 |
|
89 |
except Exception as e:
|
90 |
+
cleanup_memory()
|
91 |
raise gr.Error(f"Code generation failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Create the Gradio interface
|
94 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple")) as demo:
|
|
|
96 |
"""
|
97 |
# 🛠️ AI Tool Builder by Syncmerce
|
98 |
|
99 |
+
Generate Python code for your tools using AI. Simply describe what you want to build!
|
100 |
"""
|
101 |
)
|
102 |
|
|
|
115 |
code_output = gr.Code(
|
116 |
label="Generated Code",
|
117 |
language="python",
|
118 |
+
lines=20,
|
119 |
show_label=True
|
120 |
)
|
121 |
|
122 |
+
# Add examples (keeping them simple to save memory)
|
123 |
gr.Examples(
|
124 |
examples=[
|
125 |
+
["Create a simple PDF text extractor"],
|
126 |
+
["Build a basic web scraper for product prices"],
|
127 |
+
["Create an image resizing tool"],
|
|
|
128 |
],
|
129 |
inputs=prompt_input,
|
130 |
outputs=code_output,
|
|
|
147 |
api_name="clear"
|
148 |
)
|
149 |
|
|
|
150 |
gr.Markdown(
|
151 |
"""
|
152 |
### Tips for better results:
|
153 |
+
- Keep your requirements clear and concise
|
154 |
+
- Specify input/output formats if needed
|
155 |
+
- Mention any specific libraries you want to use
|
|
|
|
|
156 |
"""
|
157 |
)
|
158 |
|
159 |
+
# Launch the app with optimized settings
|
160 |
demo.launch(
|
161 |
share=True,
|
162 |
enable_queue=True,
|
163 |
show_error=True,
|
164 |
server_name="0.0.0.0",
|
165 |
+
server_port=7860,
|
166 |
+
cache_examples=True,
|
167 |
+
max_threads=4
|
168 |
)
|