import gradio as gr from transformers import pipeline import torch import numpy as np from PIL import Image import io def remove_background(input_image): try: # Initialize the pipeline with trust_remote_code=True segmentor = pipeline("image-segmentation", model="briaai/RMBG-1.4", device=-1, trust_remote_code=True) # Process the image result = segmentor(input_image) return result['output_image'] except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") # Custom CSS for mobile-friendly design css = """ .gradio-container { font-family: 'Segoe UI', sans-serif; max-width: 100% !important; padding: 10px !important; } .container { display: flex; flex-direction: column; gap: 20px; } .image-container { width: 100%; max-width: 500px; margin: 0 auto; } .gr-button { background: linear-gradient(45deg, #FFD700, #FFA500); border: none !important; color: black !important; padding: 12px 20px !important; border-radius: 8px !important; font-weight: bold !important; margin: 10px 0 !important; width: 100% !important; max-width: 300px !important; } @media (max-width: 768px) { .gradio-container { padding: 5px !important; } .gr-button { padding: 10px 15px !important; } } """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.HTML( """
Powered by RMBG V1.4 model