import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from PIL import Image
import io
# First, ensure all required dependencies are installed
try:
import torchvision
import skimage
except ImportError:
print("Installing required packages...")
import subprocess
subprocess.check_call(["pip", "install", "torchvision", "scikit-image"])
import torchvision
import skimage
def remove_background(input_image):
try:
# Initialize the pipeline with correct parameters and dependencies
segmentor = pipeline(
"image-segmentation",
model="briaai/RMBG-1.4",
trust_remote_code=True,
device="cpu",
framework="pt"
)
# Process the image
result = segmentor(input_image)
return result['output_image']
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Create Gradio interface
with gr.Blocks() as demo:
gr.HTML(
"""
AI Background Remover
Remove backgrounds instantly using RMBG V1.4 model
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "clipboard"]
)
with gr.Column():
output_image = gr.Image(
label="Result",
type="pil"
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
process_btn = gr.Button("Remove Background", variant="primary")
# Status message
status_msg = gr.Textbox(
label="Status",
placeholder="Ready to process your image...",
interactive=False
)
# Event handlers
def process_and_update(image):
if image is None:
return None, "Please upload an image first"
try:
result = remove_background(image)
return result, "✨ Background removed successfully!"
except Exception as e:
return None, f"❌ Error: {str(e)}"
process_btn.click(
fn=process_and_update,
inputs=[input_image],
outputs=[output_image, status_msg],
)
clear_btn.click(
fn=lambda: (None, None, "Ready to process your image..."),
outputs=[input_image, output_image, status_msg],
)
# Launch the app
demo.launch()