Spaces:
Runtime error
Runtime error
import streamlit as st | |
from detection import * | |
def detect_on_image(x): | |
detector = Detector(model_type=x) | |
image_file = st.file_uploader("Upload An Image",type=['png','jpeg','jpg']) | |
if image_file is not None: | |
file_details = {"FileName":image_file.name,"FileType":image_file.type} | |
st.write(file_details) | |
img = Image.open(image_file) | |
st.image(img, caption='Uploaded Image.') | |
with open(image_file.name,mode = "wb") as f: | |
f.write(image_file.getbuffer()) | |
st.success("Saved File") | |
detector.onImage(image_file.name) | |
img_ = Image.open("result.jpg") | |
st.image(img_, caption='Proccesed Image.') | |
def main(): | |
with st.expander("About the App"): | |
st.markdown( '<p style="font-size: 30px;"><strong>Welcome to my Instance Segmentation App!</strong></p>', unsafe_allow_html= True) | |
option = st.selectbox( | |
'What Type of File do you want to work with?', | |
('Images', ' ')) | |
if option == "Images": | |
st.title('Instance Segmentation for Images') | |
st.subheader(""" | |
This takes an image as an input, and provides image with bounding box and mask as an output. | |
""") | |
detect_on_image('object_detection') | |
if __name__ == '__main__': | |
main() |