File size: 29,750 Bytes
314bf31
c6d370d
314bf31
 
e985ab1
 
 
0b28455
 
59084a2
0eb712b
880f9ee
85c9bd6
61242f1
cdd7269
 
1e99b99
880f9ee
61242f1
880f9ee
61242f1
cdd7269
 
61242f1
 
cdd7269
 
61242f1
 
cdd7269
 
61242f1
314bf31
 
880f9ee
314bf31
18ec658
e985ab1
314bf31
 
59084a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
 
59084a2
 
1e99b99
 
61242f1
1e99b99
 
 
 
 
9efe9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c9bd6
 
314bf31
880f9ee
 
 
 
 
 
 
 
 
 
 
 
 
 
314bf31
85c9bd6
0b28455
5165383
 
 
 
 
 
880f9ee
9efe9bb
0b28455
 
 
 
 
 
880f9ee
0b28455
 
 
9efe9bb
0b28455
370367a
9efe9bb
5165383
 
 
 
0b28455
370367a
880f9ee
5165383
 
 
 
 
0b28455
9efe9bb
5165383
 
314bf31
370367a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f745765
 
9efe9bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# app.py

import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import base64
import logging
import os
import sys

# Import OpenAI library
import openai

# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)

# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)

# Add the handler to the logger
logger.addHandler(console_handler)

# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}

# Define the categories
CATEGORIES = [
    "Social Media",
    "News and Media",
    "Education and Learning",
    "Entertainment",
    "Shopping and E-commerce",
    "Finance and Banking",
    "Technology",
    "Health and Fitness",
    "Travel and Tourism",
    "Food and Recipes",
    "Sports",
    "Arts and Culture",
    "Government and Politics",
    "Business and Economy",
    "Science and Research",
    "Personal Blogs and Journals",
    "Job Search and Careers",
    "Music and Audio",
    "Videos and Movies",
    "Reference and Knowledge Bases",
    "Dead Link",
    "Uncategorized",
]

# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')

if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY environment variable not set.")

# Set OpenAI API key and base URL to use Groq Cloud API
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"

def extract_main_content(soup):
    """
    Extract the main content from a webpage while filtering out boilerplate content.
    """
    # Remove script and style elements
    for element in soup(['script', 'style', 'header', 'footer', 'nav', 'ads', 'sidebar']):
        element.decompose()
    
    # Get text from specific content tags first
    main_content_tags = soup.find_all(['article', 'main', 'div.content', 'div.post'])
    if main_content_tags:
        content = ' '.join([tag.get_text(strip=True, separator=' ') for tag in main_content_tags])
    else:
        # Fallback to body content
        content = soup.body.get_text(strip=True, separator=' ') if soup.body else soup.get_text(strip=True, separator=' ')
    
    # Clean up the text
    content = ' '.join(content.split())
    # Limit content length to avoid token limits
    return content[:3000]

def get_page_metadata(soup):
    """
    Extract metadata from the webpage including title, description, and keywords.
    """
    metadata = {
        'title': '',
        'description': '',
        'keywords': ''
    }
    
    # Get title
    title_tag = soup.find('title')
    if title_tag:
        metadata['title'] = title_tag.string.strip()
    
    # Get meta description
    meta_desc = soup.find('meta', attrs={'name': 'description'}) or \
                soup.find('meta', attrs={'property': 'og:description'})
    if meta_desc:
        metadata['description'] = meta_desc.get('content', '').strip()
    
    # Get meta keywords
    meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
    if meta_keywords:
        metadata['keywords'] = meta_keywords.get('content', '').strip()
    
    return metadata

def generate_summary(bookmark):
    """
    Generate a comprehensive summary for a bookmark using available content and LLM.
    """
    logger.info(f"Generating summary for bookmark: {bookmark.get('url')}")
    
    try:
        # Get the HTML soup object from the bookmark if it exists
        soup = BeautifulSoup(bookmark.get('html_content', ''), 'html.parser')
        
        # Step 1: Try to get description from metadata
        metadata = get_page_metadata(soup)
        if metadata['description']:
            logger.info("Using meta description for summary")
            bookmark['summary'] = metadata['description']
            return bookmark
        
        # Step 2: If no description, extract main content
        content = extract_main_content(soup)
        if not content:
            logger.warning("No content extracted from page")
            # Fallback to title if available
            if metadata['title']:
                bookmark['summary'] = f"Page title: {metadata['title']}"
                return bookmark
            
            bookmark['summary'] = bookmark.get('title', 'No summary available.')
            return bookmark
        
        # Step 3: Generate summary using LLM
        try:
            # Prepare context for LLM
            prompt = f"""
            Webpage Title: {metadata['title']}
            Keywords: {metadata['keywords']}
            
            Content:
            {content}
            
            Please provide a concise summary (2-3 sentences) of this webpage's main content.
            Focus on what the page is about and its key information. Be factual and objective.
            """
            
            response = openai.ChatCompletion.create(
                model='llama3-8b-8192',
                messages=[
                    {"role": "system", "content": "You are a helpful assistant that creates concise webpage summaries."},
                    {"role": "user", "content": prompt}
                ],
                max_tokens=150,
                temperature=0.5,
            )
            
            summary = response['choices'][0]['message']['content'].strip()
            logger.info("Successfully generated LLM summary")
            bookmark['summary'] = summary
            return bookmark
            
        except Exception as e:
            logger.error(f"Error generating LLM summary: {e}")
            # Fallback to extracted content
            bookmark['summary'] = ' '.join(content.split()[:50]) + '...'
            return bookmark
            
    except Exception as e:
        logger.error(f"Error in generate_summary: {e}")
        # Final fallback
        bookmark['summary'] = bookmark.get('title', 'No summary available.')
        return bookmark

# Function to parse bookmarks from HTML
def parse_bookmarks(file_content):
    logger.info("Parsing bookmarks")
    try:
        soup = BeautifulSoup(file_content, 'html.parser')
        extracted_bookmarks = []
        for link in soup.find_all('a'):
            url = link.get('href')
            title = link.text.strip()
            if url and title:
                extracted_bookmarks.append({'url': url, 'title': title})
        logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
        return extracted_bookmarks
    except Exception as e:
        logger.error("Error parsing bookmarks: %s", e)
        raise

# Asynchronous function to fetch URL info
async def fetch_url_info(session, bookmark):
    url = bookmark['url']
    if url in fetch_cache:
        bookmark.update(fetch_cache[url])
        return bookmark

    try:
        logger.info(f"Fetching URL info for: {url}")
        async with session.get(url, timeout=10) as response:
            bookmark['etag'] = response.headers.get('ETag', 'N/A')
            bookmark['status_code'] = response.status

            if response.status >= 400:
                bookmark['dead_link'] = True
                bookmark['description'] = ''
                logger.warning(f"Dead link detected: {url} with status {response.status}")
            else:
                bookmark['dead_link'] = False
                content = await response.text()
                bookmark['html_content'] = content  # Store HTML content for summary generation
                soup = BeautifulSoup(content, 'html.parser')
                bookmark['description'] = ''  # Will be set by generate_summary function
                logger.info(f"Fetched information for {url}")
    except Exception as e:
        bookmark['dead_link'] = True
        bookmark['etag'] = 'N/A'
        bookmark['status_code'] = 'N/A'
        bookmark['description'] = ''
        bookmark['html_content'] = ''
        logger.error(f"Error fetching URL info for {url}: {e}")
    finally:
        fetch_cache[url] = {
            'etag': bookmark.get('etag'),
            'status_code': bookmark.get('status_code'),
            'dead_link': bookmark.get('dead_link'),
            'description': bookmark.get('description'),
            'html_content': bookmark.get('html_content', '')
        }
    return bookmark

# Asynchronous processing of bookmarks
async def process_bookmarks_async(bookmarks_list):
    logger.info("Processing bookmarks asynchronously")
    try:
        async with aiohttp.ClientSession() as session:
            tasks = []
            for bookmark in bookmarks_list:
                task = asyncio.ensure_future(fetch_url_info(session, bookmark))
                tasks.append(task)
            await asyncio.gather(*tasks)
        logger.info("Completed processing bookmarks asynchronously")
    except Exception as e:
        logger.error(f"Error in asynchronous processing of bookmarks: {e}")
        raise

# Assign category to a bookmark
def assign_category(bookmark):
    if bookmark.get('dead_link'):
        bookmark['category'] = 'Dead Link'
        logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}")
        return bookmark

    summary = bookmark.get('summary', '').lower()
    assigned_category = 'Uncategorized'

    # Keywords associated with each category
    category_keywords = {
        "Social Media": ["social media", "networking", "friends", "connect", "posts", "profile"],
        "News and Media": ["news", "journalism", "media", "headlines", "breaking news"],
        "Education and Learning": ["education", "learning", "courses", "tutorial", "university", "academy", "study"],
        "Entertainment": ["entertainment", "movies", "tv shows", "games", "comics", "fun"],
        "Shopping and E-commerce": ["shopping", "e-commerce", "buy", "sell", "marketplace", "deals", "store"],
        "Finance and Banking": ["finance", "banking", "investment", "money", "economy", "stock", "trading"],
        "Technology": ["technology", "tech", "gadgets", "software", "computers", "innovation"],
        "Health and Fitness": ["health", "fitness", "medical", "wellness", "exercise", "diet"],
        "Travel and Tourism": ["travel", "tourism", "destinations", "hotels", "flights", "vacation"],
        "Food and Recipes": ["food", "recipes", "cooking", "cuisine", "restaurant", "dining"],
        "Sports": ["sports", "scores", "teams", "athletics", "matches", "leagues"],
        "Arts and Culture": ["arts", "culture", "museum", "gallery", "exhibition", "artistic"],
        "Government and Politics": ["government", "politics", "policy", "election", "public service"],
        "Business and Economy": ["business", "corporate", "industry", "economy", "markets"],
        "Science and Research": ["science", "research", "experiment", "laboratory", "study", "scientific"],
        "Personal Blogs and Journals": ["blog", "journal", "personal", "diary", "thoughts", "opinions"],
        "Job Search and Careers": ["jobs", "careers", "recruitment", "resume", "employment", "hiring"],
        "Music and Audio": ["music", "audio", "songs", "albums", "artists", "bands"],
        "Videos and Movies": ["video", "movies", "film", "clips", "trailers", "cinema"],
        "Reference and Knowledge Bases": ["reference", "encyclopedia", "dictionary", "wiki", "knowledge", "information"],
    }

    for category, keywords in category_keywords.items():
        for keyword in keywords:
            if re.search(r'\b' + re.escape(keyword) + r'\b', summary):
                assigned_category = category
                logger.info(f"Assigned category '{assigned_category}' to bookmark: {bookmark.get('url')}")
                break
        if assigned_category != 'Uncategorized':
            break

    bookmark['category'] = assigned_category
    if assigned_category == 'Uncategorized':
        logger.info(f"No matching category found for bookmark: {bookmark.get('url')}")
    return bookmark

# Vectorize summaries and build FAISS index
def vectorize_and_index(bookmarks_list):
    logger.info("Vectorizing summaries and building FAISS index")
    try:
        summaries = [bookmark['summary'] for bookmark in bookmarks_list]
        embeddings = embedding_model.encode(summaries)
        dimension = embeddings.shape[1]
        faiss_idx = faiss.IndexFlatL2(dimension)
        faiss_idx.add(np.array(embeddings))
        logger.info("FAISS index built successfully")
        return faiss_idx, embeddings
    except Exception as e:
        logger.error(f"Error in vectorizing and indexing: {e}")
        raise

# Generate HTML display for bookmarks
def display_bookmarks():
    logger.info("Generating HTML display for bookmarks")
    cards = ''
    for i, bookmark in enumerate(bookmarks):
        index = i + 1  # Start index at 1
        status = "❌ Dead Link" if bookmark.get('dead_link') else "βœ… Active"
        title = bookmark['title']
        url = bookmark['url']
        etag = bookmark.get('etag', 'N/A')
        summary = bookmark.get('summary', '')
        category = bookmark.get('category', 'Uncategorized')

        # Apply inline styles using CSS variables
        if bookmark.get('dead_link'):
            card_style = "border: 2px solid var(--error-color);"
            text_style = "color: var(--error-color);"
        else:
            card_style = "border: 2px solid var(--success-color);"
            text_style = "color: var(--text-color);"

        card_html = f'''
        <div class="card" style="{card_style}; padding: 10px; margin: 10px; border-radius: 5px;">
            <div class="card-content">
                <h3 style="{text_style}">{index}. {title} {status}</h3>
                <p style="{text_style}"><strong>Category:</strong> {category}</p>
                <p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
                <p style="{text_style}"><strong>ETag:</strong> {etag}</p>
                <p style="{text_style}"><strong>Summary:</strong> {summary}</p>
            </div>
        </div>
        '''
        cards += card_html
    logger.info("HTML display generated")
    return cards

# Process the uploaded file
def process_uploaded_file(file):
    global bookmarks, faiss_index
    logger.info("Processing uploaded file")
    if file is None:
        logger.warning("No file uploaded")
        return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()
    try:
        file_content = file.decode('utf-8')
    except UnicodeDecodeError as e:
        logger.error(f"Error decoding the file: {e}")
        return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks()

    try:
        bookmarks = parse_bookmarks(file_content)
    except Exception as e:
        logger.error(f"Error parsing bookmarks: {e}")
        return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()

    if not bookmarks:
        logger.warning("No bookmarks found in the uploaded file")
        return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks()

    # Asynchronously fetch bookmark info
    try:
        asyncio.run(process_bookmarks_async(bookmarks))
    except Exception as e:
        logger.error(f"Error processing bookmarks asynchronously: {e}")
        return "Error processing bookmarks.", '', gr.update(choices=[]), display_bookmarks()

    # Generate summaries and assign categories
    for bookmark in bookmarks:
        generate_summary(bookmark)
        assign_category(bookmark)

    try:
        faiss_index, embeddings = vectorize_and_index(bookmarks)
    except Exception as e:
        logger.error(f"Error building FAISS index: {e}")
        return "Error building search index.", '', gr.update(choices=[]), display_bookmarks()

    message = f"βœ… Successfully processed {len(bookmarks)} bookmarks."
    logger.info(message)
    bookmark_html = display_bookmarks()

    # Update bookmark_selector choices
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
    bookmark_selector_update = gr.update(choices=choices, value=[])

    # Update bookmark_display_manage
    bookmark_display_manage_update = display_bookmarks()

    return message, bookmark_html, bookmark_selector_update, bookmark_display_manage_update

# Delete selected bookmarks
def delete_selected_bookmarks(selected_indices):
    global bookmarks, faiss_index
    if not selected_indices:
        return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
    indices = [int(s.split('.')[0])-1 for s in selected_indices]
    indices = sorted(indices, reverse=True)
    for idx in indices:
        if 0 <= idx < len(bookmarks):
            logger.info(f"Deleting bookmark at index {idx + 1}")
            bookmarks.pop(idx)
    if bookmarks:
        faiss_index, embeddings = vectorize_and_index(bookmarks)
    else:
        faiss_index = None
    message = "πŸ—‘οΈ Selected bookmarks deleted successfully."
    logger.info(message)
    # Update bookmark_selector choices
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
    bookmark_selector_update = gr.update(choices=choices, value=[])
    # Update bookmarks display
    bookmarks_html = display_bookmarks()
    return message, bookmark_selector_update, bookmarks_html

# Edit category of selected bookmarks
def edit_selected_bookmarks_category(selected_indices, new_category):
    if not selected_indices:
        return "⚠️ No bookmarks selected.", '', gr.update()
    if not new_category:
        return "⚠️ No new category selected.", '', gr.update()
    indices = [int(s.split('.')[0])-1 for s in selected_indices]
    for idx in indices:
        if 0 <= idx < len(bookmarks):
            bookmarks[idx]['category'] = new_category
            logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
    message = "✏️ Category updated for selected bookmarks."
    logger.info(message)
    # Update bookmark_selector choices
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
    bookmark_selector_update = gr.update(choices=choices, value=[])
    # Update bookmarks display
    bookmarks_html = display_bookmarks()
    return message, bookmark_selector_update, bookmarks_html

# Export bookmarks to HTML
def export_bookmarks():
    if not bookmarks:
        logger.warning("No bookmarks to export")
        return "⚠️ No bookmarks to export."
    try:
        logger.info("Exporting bookmarks to HTML")
        # Create an HTML content similar to the imported bookmarks file
        soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
        dl = soup.new_tag('DL')
        for bookmark in bookmarks:
            dt = soup.new_tag('DT')
            a = soup.new_tag('A', href=bookmark['url'])
            a.string = bookmark['title']
            dt.append(a)
            dl.append(dt)
        soup.append(dl)
        html_content = str(soup)
        # Encode the HTML content to base64 for download
        b64 = base64.b64encode(html_content.encode()).decode()
        href = f'data:text/html;base64,{b64}'
        logger.info("Bookmarks exported successfully")
        return f'<a href="{href}" download="bookmarks.html">πŸ’Ύ Download Exported Bookmarks</a>'
    except Exception as e:
        logger.error(f"Error exporting bookmarks: {e}")
        return "⚠️ Error exporting bookmarks."

# Chatbot response using Groq Cloud API
def chatbot_response(user_query):
    if not GROQ_API_KEY:
        logger.warning("GROQ_API_KEY not set.")
        return "⚠️ API key not set. Please set the GROQ_API_KEY environment variable in the Hugging Face Space settings."

    if not bookmarks:
        logger.warning("No bookmarks available for chatbot")
        return "⚠️ No bookmarks available. Please upload and process your bookmarks first."

    logger.info(f"Chatbot received query: {user_query}")

    try:
        # Limit the number of bookmarks to prevent exceeding token limits
        max_bookmarks = 50  # Adjust as needed
        bookmark_data = ""
        for idx, bookmark in enumerate(bookmarks[:max_bookmarks]):
            bookmark_data += f"{idx+1}. Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}\n\n"

        # Construct the prompt
        prompt = f"""
You are an assistant that helps users find relevant bookmarks from their collection based on their queries.

User Query:
{user_query}

Bookmarks:
{bookmark_data}

Please identify the most relevant bookmarks that match the user's query. Provide a concise list including the index, title, URL, and a brief summary.
"""

        # Call the Groq Cloud API via the OpenAI client
        response = openai.ChatCompletion.create(
            model='llama3-8b-8192',
            messages=[
                {"role": "system", "content": "You help users find relevant bookmarks based on their queries."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=500,
            temperature=0.7,
        )

        # Extract the response text
        answer = response['choices'][0]['message']['content'].strip()
        logger.info("Chatbot response generated using Groq Cloud API")
        return answer

    except Exception as e:
        error_message = f"⚠️ Error processing your query: {str(e)}"
        logger.error(error_message)
        print(error_message)  # Ensure error appears in Hugging Face Spaces logs
        return error_message

# Build the Gradio app
def build_app():
    try:
        logger.info("Building Gradio app")
        with gr.Blocks(css="app.css") as demo:
            # General Overview
            gr.Markdown("""
            # πŸ“š SmartMarks - AI Browser Bookmarks Manager

            Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly. Whether you're looking to categorize your links, retrieve information quickly, or maintain an updated list, SmartMarks has you covered.

            ---

            ## πŸš€ **How to Use SmartMarks**

            SmartMarks is divided into three main sections:

            1. **πŸ“‚ Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
            2. **πŸ’¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
            3. **πŸ› οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.

            Navigate through the tabs to explore each feature in detail.
            """)

            # Upload and Process Bookmarks Tab
            with gr.Tab("Upload and Process Bookmarks"):
                gr.Markdown("""
                ## πŸ“‚ **Upload and Process Bookmarks**

                ### πŸ“ **Steps to Upload and Process:**

                1. **πŸ”½ Upload Bookmarks File:**
                   - Click on the **"Upload Bookmarks HTML File"** button.
                   - Select your browser's exported bookmarks HTML file from your device.

                2. **βš™οΈ Process Bookmarks:**
                   - After uploading, click on the **"Process Bookmarks"** button.
                   - SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.

                3. **πŸ“„ View Processed Bookmarks:**
                   - Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
                """)

                upload = gr.File(label="πŸ“ Upload Bookmarks HTML File", type='binary')
                process_button = gr.Button("βš™οΈ Process Bookmarks")
                output_text = gr.Textbox(label="βœ… Output", interactive=False)
                bookmark_display = gr.HTML(label="πŸ“„ Bookmarks")

                # Initialize Manage Bookmarks components
                bookmark_selector = gr.CheckboxGroup(label="βœ… Select Bookmarks", choices=[])
                bookmark_display_manage = gr.HTML(label="πŸ“„ Manage Bookmarks Display")

                process_button.click(
                    process_uploaded_file,
                    inputs=upload,
                    outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
                )

            # Chat with Bookmarks Tab
            with gr.Tab("Chat with Bookmarks"):
                gr.Markdown("""
                ## πŸ’¬ **Chat with Bookmarks**

                ### πŸ€– **How to Interact:**

                1. **✍️ Enter Your Query:**
                   - In the **"Ask about your bookmarks"** textbox, type your question or keyword related to your bookmarks. For example, "Do I have any bookmarks about GenerativeAI?"

                2. **πŸ“¨ Submit Your Query:**
                   - Click the **"Send"** button to submit your query.

                3. **πŸ“ˆ Receive AI-Driven Responses:**
                   - SmartMarks will analyze your query and provide relevant bookmarks that match your request, making it easier to find specific links without manual searching.
                """)

                user_input = gr.Textbox(label="✍️ Ask about your bookmarks", placeholder="e.g., Do I have any bookmarks about GenerativeAI?")
                chat_output = gr.Textbox(label="πŸ’¬ Chatbot Response", interactive=False)
                chat_button = gr.Button("πŸ“¨ Send")

                chat_button.click(
                    chatbot_response,
                    inputs=user_input,
                    outputs=chat_output
                )

            # Manage Bookmarks Tab
            with gr.Tab("Manage Bookmarks"):
                gr.Markdown("""
                ## πŸ› οΈ **Manage Bookmarks**

                ### πŸ—‚οΈ **Features:**

                1. **πŸ‘οΈ View Bookmarks:**
                   - All your processed bookmarks are displayed here with their respective categories and summaries.

                2. **βœ… Select Bookmarks:**
                   - Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.

                3. **πŸ—‘οΈ Delete Selected Bookmarks:**
                   - After selecting the desired bookmarks, click the **"Delete Selected Bookmarks"** button to remove them from your list.

                4. **✏️ Edit Categories:**
                   - Select the bookmarks you want to re-categorize.
                   - Choose a new category from the dropdown menu labeled **"New Category"**.
                   - Click the **"Edit Category of Selected Bookmarks"** button to update their categories.

                5. **πŸ’Ύ Export Bookmarks:**
                   - Click the **"Export Bookmarks"** button to download your updated bookmarks as an HTML file.
                   - This file can be uploaded back to your browser to reflect the changes made within SmartMarks.
                """)

                manage_output = gr.Textbox(label="πŸ”„ Manage Output", interactive=False)
                bookmark_display_manage = gr.HTML(label="πŸ“„ Manage Bookmarks Display")
                bookmark_selector = gr.CheckboxGroup(label="βœ… Select Bookmarks", choices=[])

                new_category_input = gr.Dropdown(label="πŸ†• New Category", choices=CATEGORIES, value="Uncategorized")
                with gr.Row():
                    delete_button = gr.Button("πŸ—‘οΈ Delete Selected Bookmarks")
                    edit_category_button = gr.Button("✏️ Edit Category of Selected Bookmarks")
                    export_button = gr.Button("πŸ’Ύ Export Bookmarks")
                download_link = gr.HTML(label="πŸ“₯ Download Exported Bookmarks")

                # Define button actions
                delete_button.click(
                    delete_selected_bookmarks,
                    inputs=bookmark_selector,
                    outputs=[manage_output, bookmark_selector, bookmark_display_manage]
                )

                edit_category_button.click(
                    edit_selected_bookmarks_category,
                    inputs=[bookmark_selector, new_category_input],
                    outputs=[manage_output, bookmark_selector, bookmark_display_manage]
                )

                export_button.click(
                    export_bookmarks,
                    inputs=None,
                    outputs=download_link
                )

                # Initialize display after processing bookmarks
                process_button.click(
                    process_uploaded_file,
                    inputs=upload,
                    outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
                )

        logger.info("Launching Gradio app")
        demo.launch(debug=True)
    except Exception as e:
        logger.error(f"Error building the app: {e}")
        print(f"Error building the app: {e}")

if __name__ == "__main__":
    build_app()