File size: 14,013 Bytes
314bf31
a4303b2
314bf31
 
 
 
 
 
0b28455
 
59084a2
cd9d0c4
314bf31
 
 
6952cd8
314bf31
 
 
59084a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
 
59084a2
 
314bf31
5165383
 
 
 
0b28455
5165383
 
 
314bf31
0b28455
5165383
 
 
 
 
 
0b28455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5165383
 
 
 
0b28455
5165383
 
 
 
 
0b28455
5165383
 
314bf31
0b28455
 
 
 
 
 
 
 
314bf31
0b28455
 
 
5165383
0b28455
 
 
 
 
5165383
314bf31
59084a2
ab98d81
 
 
 
59084a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314bf31
5165383
 
 
 
 
 
f745765
cd9d0c4
 
f745765
cd9d0c4
f745765
cd9d0c4
 
 
 
 
 
 
 
 
 
6952cd8
 
5165383
 
cd9d0c4
5165383
 
 
cd9d0c4
5165383
 
 
 
cd9d0c4
5165383
0b28455
 
 
59084a2
5165383
 
59084a2
5165383
 
 
cd9d0c4
 
6952cd8
 
5165383
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
59084a2
5165383
f745765
cd9d0c4
5165383
 
cd9d0c4
5165383
cd9d0c4
 
 
 
0b28455
 
5165383
 
 
 
cd9d0c4
 
5165383
cd9d0c4
f745765
cd9d0c4
5165383
 
cd9d0c4
ab98d81
 
 
5165383
 
 
 
 
ab98d81
cd9d0c4
 
5165383
cd9d0c4
f745765
ab98d81
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
ab98d81
f745765
6952cd8
99d9847
f745765
 
6952cd8
f745765
 
cd9d0c4
5165383
cd9d0c4
 
 
f745765
 
cd9d0c4
f745765
cd9d0c4
f745765
 
 
5165383
 
 
 
 
 
 
 
 
f745765
 
6952cd8
cd9d0c4
ab98d81
 
 
cd9d0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f745765
cd9d0c4
f745765
cd9d0c4
 
f745765
 
 
cd9d0c4
 
 
f745765
 
ab98d81
cd9d0c4
ab98d81
 
 
 
cd9d0c4
 
ab98d81
f745765
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# app.py

import gradio as gr
from bs4 import BeautifulSoup
import requests
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import pandas as pd

# Initialize models and variables
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}

# Define the categories
CATEGORIES = [
    "Social Media",
    "News and Media",
    "Education and Learning",
    "Entertainment",
    "Shopping and E-commerce",
    "Finance and Banking",
    "Technology",
    "Health and Fitness",
    "Travel and Tourism",
    "Food and Recipes",
    "Sports",
    "Arts and Culture",
    "Government and Politics",
    "Business and Economy",
    "Science and Research",
    "Personal Blogs and Journals",
    "Job Search and Careers",
    "Music and Audio",
    "Videos and Movies",
    "Reference and Knowledge Bases",
    "Dead Link",
    "Uncategorized",
]

def parse_bookmarks(file_content):
    soup = BeautifulSoup(file_content, 'html.parser')
    extracted_bookmarks = []
    for link in soup.find_all('a'):
        url = link.get('href')
        title = link.text.strip()
        if url and title:
            extracted_bookmarks.append({'url': url, 'title': title})
    return extracted_bookmarks

async def fetch_url_info(session, bookmark):
    url = bookmark['url']
    if url in fetch_cache:
        bookmark.update(fetch_cache[url])
        return bookmark

    try:
        async with session.get(url, timeout=5) as response:
            bookmark['etag'] = response.headers.get('ETag', 'N/A')
            bookmark['status_code'] = response.status

            if response.status >= 400:
                bookmark['dead_link'] = True
                bookmark['description'] = ''
            else:
                bookmark['dead_link'] = False
                content = await response.text()
                soup = BeautifulSoup(content, 'html.parser')

                # Extract meta description or Open Graph description
                meta_description = soup.find('meta', attrs={'name': 'description'})
                og_description = soup.find('meta', attrs={'property': 'og:description'})
                if og_description and og_description.get('content'):
                    description = og_description.get('content')
                elif meta_description and meta_description.get('content'):
                    description = meta_description.get('content')
                else:
                    description = ''

                bookmark['description'] = description
    except Exception as e:
        bookmark['dead_link'] = True
        bookmark['etag'] = 'N/A'
        bookmark['status_code'] = 'N/A'
        bookmark['description'] = ''
    finally:
        fetch_cache[url] = {
            'etag': bookmark.get('etag'),
            'status_code': bookmark.get('status_code'),
            'dead_link': bookmark.get('dead_link'),
            'description': bookmark.get('description'),
        }
    return bookmark

async def process_bookmarks_async(bookmarks):
    async with aiohttp.ClientSession() as session:
        tasks = []
        for bookmark in bookmarks:
            task = asyncio.ensure_future(fetch_url_info(session, bookmark))
            tasks.append(task)
        await asyncio.gather(*tasks)

def generate_summary(bookmark):
    description = bookmark.get('description', '')
    if description:
        bookmark['summary'] = description
    else:
        title = bookmark.get('title', '')
        if title:
            bookmark['summary'] = title
        else:
            bookmark['summary'] = 'No summary available.'
    return bookmark

def assign_category(bookmark):
    if bookmark.get('dead_link'):
        bookmark['category'] = 'Dead Link'
        return bookmark

    summary = bookmark.get('summary', '').lower()
    assigned_category = 'Uncategorized'

    # Keywords associated with each category
    category_keywords = {
        "Social Media": ["social media", "networking", "friends", "connect", "posts", "profile"],
        "News and Media": ["news", "journalism", "media", "headlines", "breaking news"],
        "Education and Learning": ["education", "learning", "courses", "tutorial", "university", "academy", "study"],
        "Entertainment": ["entertainment", "movies", "tv shows", "games", "comics", "fun"],
        "Shopping and E-commerce": ["shopping", "e-commerce", "buy", "sell", "marketplace", "deals", "store"],
        "Finance and Banking": ["finance", "banking", "investment", "money", "economy", "stock", "trading"],
        "Technology": ["technology", "tech", "gadgets", "software", "computers", "innovation"],
        "Health and Fitness": ["health", "fitness", "medical", "wellness", "exercise", "diet"],
        "Travel and Tourism": ["travel", "tourism", "destinations", "hotels", "flights", "vacation"],
        "Food and Recipes": ["food", "recipes", "cooking", "cuisine", "restaurant", "dining"],
        "Sports": ["sports", "scores", "teams", "athletics", "matches", "leagues"],
        "Arts and Culture": ["arts", "culture", "museum", "gallery", "exhibition", "artistic"],
        "Government and Politics": ["government", "politics", "policy", "election", "public service"],
        "Business and Economy": ["business", "corporate", "industry", "economy", "markets"],
        "Science and Research": ["science", "research", "experiment", "laboratory", "study", "scientific"],
        "Personal Blogs and Journals": ["blog", "journal", "personal", "diary", "thoughts", "opinions"],
        "Job Search and Careers": ["jobs", "careers", "recruitment", "resume", "employment", "hiring"],
        "Music and Audio": ["music", "audio", "songs", "albums", "artists", "bands"],
        "Videos and Movies": ["video", "movies", "film", "clips", "trailers", "cinema"],
        "Reference and Knowledge Bases": ["reference", "encyclopedia", "dictionary", "wiki", "knowledge", "information"],
    }

    for category, keywords in category_keywords.items():
        for keyword in keywords:
            if re.search(r'\b' + re.escape(keyword) + r'\b', summary):
                assigned_category = category
                break
        if assigned_category != 'Uncategorized':
            break

    bookmark['category'] = assigned_category
    return bookmark

def vectorize_and_index(bookmarks):
    summaries = [bookmark['summary'] for bookmark in bookmarks]
    embeddings = embedding_model.encode(summaries)
    dimension = embeddings.shape[1]
    faiss_idx = faiss.IndexFlatL2(dimension)
    faiss_idx.add(np.array(embeddings))
    return faiss_idx, embeddings

def bookmarks_to_dataframe():
    data = []
    for i, bookmark in enumerate(bookmarks):
        index = i + 1
        status = "Dead Link" if bookmark.get('dead_link') else "Active"
        data.append({
            'Index': index,
            'Title': bookmark['title'],
            'URL': bookmark['url'],
            'Category': bookmark.get('category', 'Uncategorized'),
            'Status': status,
            'Summary': bookmark.get('summary', ''),
        })
    df = pd.DataFrame(data)
    return df

def process_uploaded_file(file):
    global bookmarks, faiss_index
    if file is None:
        return "Please upload a bookmarks HTML file.", pd.DataFrame()
    try:
        file_content = file.decode('utf-8')
    except UnicodeDecodeError:
        return "Error decoding the file. Please ensure it's a valid HTML file.", pd.DataFrame()

    bookmarks = parse_bookmarks(file_content)

    if not bookmarks:
        return "No bookmarks found in the uploaded file.", pd.DataFrame()

    # Asynchronously fetch bookmark info
    asyncio.run(process_bookmarks_async(bookmarks))

    # Generate summaries and assign categories
    for bookmark in bookmarks:
        generate_summary(bookmark)
        assign_category(bookmark)

    faiss_index, embeddings = vectorize_and_index(bookmarks)
    message = f"Successfully processed {len(bookmarks)} bookmarks."
    bookmark_df = bookmarks_to_dataframe()
    return message, bookmark_df

def chatbot_response(user_query):
    if faiss_index is None or not bookmarks:
        return "No bookmarks available. Please upload and process your bookmarks first."

    # Vectorize user query
    user_embedding = embedding_model.encode([user_query])
    D, I = faiss_index.search(np.array(user_embedding), k=5)  # Retrieve top 5 matches

    # Generate response
    response = ""
    for idx in I[0]:
        if idx < len(bookmarks):
            bookmark = bookmarks[idx]
            index = idx + 1  # Start index at 1
            response += f"{index}. Title: {bookmark['title']}\nURL: {bookmark['url']}\nCategory: {bookmark.get('category', 'Uncategorized')}\nSummary: {bookmark['summary']}\n\n"
    return response.strip()

def edit_bookmark(row):
    global faiss_index
    try:
        bookmark_idx = int(row['Index']) - 1  # Adjust index to match list (starting at 0)
        if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
            return "Invalid bookmark index.", bookmarks_to_dataframe()
        bookmarks[bookmark_idx]['title'] = row['Title']
        bookmarks[bookmark_idx]['url'] = row['URL']
        bookmarks[bookmark_idx]['category'] = row['Category']
        # Re-fetch bookmark info
        asyncio.run(process_bookmarks_async([bookmarks[bookmark_idx]]))
        generate_summary(bookmarks[bookmark_idx])
        # Rebuild the FAISS index
        faiss_index, embeddings = vectorize_and_index(bookmarks)
        message = "Bookmark updated successfully."
        updated_df = bookmarks_to_dataframe()
        return message, updated_df
    except Exception as e:
        return f"Error: {str(e)}", bookmarks_to_dataframe()

def delete_bookmarks(selected_indices):
    global faiss_index
    try:
        indices = sorted([int(idx) - 1 for idx in selected_indices], reverse=True)
        for idx in indices:
            if 0 <= idx < len(bookmarks):
                bookmarks.pop(idx)
        # Rebuild the FAISS index
        if bookmarks:
            faiss_index, embeddings = vectorize_and_index(bookmarks)
        else:
            faiss_index = None
        message = "Selected bookmarks deleted successfully."
        updated_df = bookmarks_to_dataframe()
        return message, updated_df
    except Exception as e:
        return f"Error: {str(e)}", bookmarks_to_dataframe()

def export_bookmarks():
    if not bookmarks:
        return None
    # Create an HTML content similar to the imported bookmarks file
    soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
    dl = soup.new_tag('DL')
    for bookmark in bookmarks:
        dt = soup.new_tag('DT')
        a = soup.new_tag('A', href=bookmark['url'])
        a.string = bookmark['title']
        dt.append(a)
        dl.append(dt)
    soup.append(dl)
    html_content = str(soup)
    return html_content

def build_app():
    with gr.Blocks(css="app.css") as demo:
        gr.Markdown("<h1>Bookmark Manager App</h1>")

        with gr.Tab("Upload and Process Bookmarks"):
            upload = gr.File(label="Upload Bookmarks HTML File", type='binary')
            process_button = gr.Button("Process Bookmarks")
            output_text = gr.Textbox(label="Output")
            bookmark_table = gr.Dataframe(label="Bookmarks", interactive=False)

            def update_bookmark_table(file):
                message, df = process_uploaded_file(file)
                return message, df

            process_button.click(
                update_bookmark_table,
                inputs=upload,
                outputs=[output_text, bookmark_table]
            )

        with gr.Tab("Chat with Bookmarks"):
            user_input = gr.Textbox(label="Ask about your bookmarks")
            chat_output = gr.Textbox(label="Chatbot Response")
            chat_button = gr.Button("Send")

            chat_button.click(
                chatbot_response,
                inputs=user_input,
                outputs=chat_output
            )

        with gr.Tab("Manage Bookmarks"):
            manage_output = gr.Textbox(label="Manage Output")
            bookmark_table_manage = gr.Dataframe(label="Bookmarks", interactive=True)
            selected_indices = gr.Textbox(label="Selected Indices (comma-separated)", visible=False)
            delete_button = gr.Button("Delete Selected Bookmarks")
            export_button = gr.Button("Export Bookmarks")
            download_link = gr.File(label="Download Exported Bookmarks", interactive=False)

            def update_manage_table():
                df = bookmarks_to_dataframe()
                return df

            def delete_selected_bookmarks(dataframe):
                selected_indices = dataframe['Index'].tolist()
                message, updated_df = delete_bookmarks(selected_indices)
                return message, updated_df

            def export_bookmarks_file():
                content = export_bookmarks()
                if content:
                    with open('bookmarks.html', 'w', encoding='utf-8') as f:
                        f.write(content)
                    return 'bookmarks.html'
                else:
                    return None

            bookmark_table_manage.change(
                edit_bookmark,
                inputs=bookmark_table_manage,
                outputs=[manage_output, bookmark_table_manage]
            )

            delete_button.click(
                delete_selected_bookmarks,
                inputs=bookmark_table_manage,
                outputs=[manage_output, bookmark_table_manage]
            )

            export_button.click(
                export_bookmarks_file,
                inputs=None,
                outputs=download_link
            )

            # Initial load of the bookmarks table
            bookmark_table_manage.value = update_manage_table()

    demo.launch()

if __name__ == "__main__":
    build_app()