Spaces:
Running
Running
siddhartharya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ import sys
|
|
14 |
import threading
|
15 |
from queue import Queue, Empty
|
16 |
import json
|
17 |
-
from concurrent.futures import ThreadPoolExecutor
|
18 |
|
19 |
# Import OpenAI library
|
20 |
import openai
|
@@ -83,13 +83,10 @@ if not OPENAI_API_KEY:
|
|
83 |
openai.api_key = OPENAI_API_KEY
|
84 |
openai.api_base = "https://api.groq.com/openai/v1" # Ensure this is the correct base URL for your API
|
85 |
|
86 |
-
# Initialize global variables for rate limiting
|
87 |
-
api_lock = threading.Lock()
|
88 |
-
last_api_call_time = 0
|
89 |
-
|
90 |
# Rate Limiter Configuration
|
91 |
-
RPM_LIMIT =
|
92 |
-
TPM_LIMIT =
|
|
|
93 |
|
94 |
# Implementing a Token Bucket Rate Limiter
|
95 |
class TokenBucket:
|
@@ -115,7 +112,7 @@ class TokenBucket:
|
|
115 |
|
116 |
def wait_for_token(self, tokens=1):
|
117 |
while not self.consume(tokens):
|
118 |
-
time.sleep(0.
|
119 |
|
120 |
# Initialize rate limiters
|
121 |
rpm_rate = RPM_LIMIT / 60 # tokens per second
|
@@ -238,137 +235,125 @@ def llm_worker():
|
|
238 |
"""
|
239 |
logger.info("LLM worker started.")
|
240 |
while True:
|
|
|
241 |
try:
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
html_content = bookmark.get('html_content', '')
|
258 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
259 |
-
metadata = get_page_metadata(soup)
|
260 |
-
main_content = extract_main_content(soup)
|
261 |
-
|
262 |
-
# Prepare content for the prompt
|
263 |
-
content_parts = []
|
264 |
-
if metadata['title']:
|
265 |
-
content_parts.append(f"Title: {metadata['title']}")
|
266 |
-
if metadata['description']:
|
267 |
-
content_parts.append(f"Description: {metadata['description']}")
|
268 |
-
if metadata['keywords']:
|
269 |
-
content_parts.append(f"Keywords: {metadata['keywords']}")
|
270 |
-
if main_content:
|
271 |
-
content_parts.append(f"Main Content: {main_content}")
|
272 |
-
|
273 |
-
content_text = '\n'.join(content_parts)
|
274 |
-
|
275 |
-
# Detect insufficient or erroneous content
|
276 |
-
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
|
277 |
-
if not content_text or len(content_text.split()) < 50:
|
278 |
-
use_prior_knowledge = True
|
279 |
-
logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
|
280 |
-
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
|
281 |
-
use_prior_knowledge = True
|
282 |
-
logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
|
283 |
-
else:
|
284 |
-
use_prior_knowledge = False
|
285 |
-
|
286 |
-
if use_prior_knowledge:
|
287 |
-
prompt = f"""
|
288 |
-
You are a knowledgeable assistant with up-to-date information as of 2023.
|
289 |
-
URL: {bookmark.get('url')}
|
290 |
-
Provide:
|
291 |
-
1. A concise summary (max two sentences) about this website.
|
292 |
-
2. Assign the most appropriate category from the list below.
|
293 |
-
Categories:
|
294 |
-
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
295 |
-
Format:
|
296 |
-
Please provide your response in the following JSON format:
|
297 |
-
{{
|
298 |
-
"summary": "Your summary here.",
|
299 |
-
"category": "One category from the list."
|
300 |
-
}}
|
301 |
-
"""
|
302 |
-
else:
|
303 |
-
prompt = f"""
|
304 |
-
You are an assistant that creates concise webpage summaries and assigns categories.
|
305 |
-
Content:
|
306 |
-
{content_text}
|
307 |
-
Provide:
|
308 |
-
1. A concise summary (max two sentences) focusing on the main topic.
|
309 |
-
2. Assign the most appropriate category from the list below.
|
310 |
-
Categories:
|
311 |
-
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
|
312 |
-
Format:
|
313 |
-
Please provide your response in the following JSON format:
|
314 |
-
{{
|
315 |
-
"summary": "Your summary here.",
|
316 |
-
"category": "One category from the list."
|
317 |
-
}}
|
318 |
-
"""
|
319 |
-
|
320 |
-
response = openai.ChatCompletion.create(
|
321 |
-
model='llama-3.1-70b-versatile', # Ensure this model is correct and available
|
322 |
-
messages=[
|
323 |
-
{"role": "user", "content": prompt}
|
324 |
-
],
|
325 |
-
max_tokens=150,
|
326 |
-
temperature=0.5,
|
327 |
-
)
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
raise ValueError("Empty response received from the model.")
|
332 |
|
333 |
-
|
334 |
try:
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
def generate_summary_and_assign_category(bookmark):
|
374 |
"""
|
@@ -704,7 +689,9 @@ def chatbot_response(user_query, chat_history):
|
|
704 |
|
705 |
# Rate Limiting
|
706 |
rpm_bucket.wait_for_token()
|
707 |
-
|
|
|
|
|
708 |
|
709 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
710 |
k = 5
|
|
|
14 |
import threading
|
15 |
from queue import Queue, Empty
|
16 |
import json
|
17 |
+
from concurrent.futures import ThreadPoolExecutor
|
18 |
|
19 |
# Import OpenAI library
|
20 |
import openai
|
|
|
83 |
openai.api_key = OPENAI_API_KEY
|
84 |
openai.api_base = "https://api.groq.com/openai/v1" # Ensure this is the correct base URL for your API
|
85 |
|
|
|
|
|
|
|
|
|
86 |
# Rate Limiter Configuration
|
87 |
+
RPM_LIMIT = 60 # Requests per minute (adjust based on your API's limit)
|
88 |
+
TPM_LIMIT = 60000 # Tokens per minute (adjust based on your API's limit)
|
89 |
+
BATCH_SIZE = 5 # Number of bookmarks per batch
|
90 |
|
91 |
# Implementing a Token Bucket Rate Limiter
|
92 |
class TokenBucket:
|
|
|
112 |
|
113 |
def wait_for_token(self, tokens=1):
|
114 |
while not self.consume(tokens):
|
115 |
+
time.sleep(0.05)
|
116 |
|
117 |
# Initialize rate limiters
|
118 |
rpm_rate = RPM_LIMIT / 60 # tokens per second
|
|
|
235 |
"""
|
236 |
logger.info("LLM worker started.")
|
237 |
while True:
|
238 |
+
batch = []
|
239 |
try:
|
240 |
+
# Collect bookmarks up to BATCH_SIZE
|
241 |
+
while len(batch) < BATCH_SIZE:
|
242 |
+
bookmark = llm_queue.get(timeout=1)
|
243 |
+
if bookmark is None:
|
244 |
+
# Shutdown signal
|
245 |
+
logger.info("LLM worker shutting down.")
|
246 |
+
return
|
247 |
+
if not bookmark.get('dead_link') and not bookmark.get('slow_link'):
|
248 |
+
batch.append(bookmark)
|
249 |
+
else:
|
250 |
+
# Skip processing for dead or slow links
|
251 |
+
bookmark['summary'] = 'No summary available.'
|
252 |
+
bookmark['category'] = 'Uncategorized'
|
253 |
+
llm_queue.task_done()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
except Empty:
|
256 |
+
pass # No more bookmarks at the moment
|
|
|
257 |
|
258 |
+
if batch:
|
259 |
try:
|
260 |
+
# Rate Limiting
|
261 |
+
rpm_bucket.wait_for_token()
|
262 |
+
# Estimate tokens: prompt + max_tokens
|
263 |
+
# Here, we assume max_tokens=150 per bookmark
|
264 |
+
total_tokens = 150 * len(batch)
|
265 |
+
tpm_bucket.wait_for_token(tokens=total_tokens)
|
266 |
+
|
267 |
+
# Prepare prompt
|
268 |
+
prompt = "You are an assistant that creates concise webpage summaries and assigns categories.\n\n"
|
269 |
+
prompt += "Provide summaries and categories for the following bookmarks:\n\n"
|
270 |
+
|
271 |
+
for idx, bookmark in enumerate(batch, 1):
|
272 |
+
prompt += f"Bookmark {idx}:\nURL: {bookmark['url']}\nTitle: {bookmark['title']}\n\n"
|
273 |
+
|
274 |
+
prompt += f"Categories:\n{', '.join([f'\"{cat}\"' for cat in CATEGORIES])}\n\n"
|
275 |
+
prompt += "Format your response as a JSON object where each key is the bookmark URL and the value is another JSON object containing 'summary' and 'category'.\n\n"
|
276 |
+
prompt += "Example:\n"
|
277 |
+
prompt += "{\n"
|
278 |
+
prompt += " \"https://example.com\": {\n"
|
279 |
+
prompt += " \"summary\": \"This is an example summary.\",\n"
|
280 |
+
prompt += " \"category\": \"Technology\"\n"
|
281 |
+
prompt += " }\n"
|
282 |
+
prompt += "}\n\n"
|
283 |
+
prompt += "Now, provide the summaries and categories for the bookmarks listed above."
|
284 |
+
|
285 |
+
response = openai.ChatCompletion.create(
|
286 |
+
model='llama-3.1-70b-versatile', # Ensure this model is correct and available
|
287 |
+
messages=[
|
288 |
+
{"role": "user", "content": prompt}
|
289 |
+
],
|
290 |
+
max_tokens=150 * len(batch),
|
291 |
+
temperature=0.5,
|
292 |
+
)
|
293 |
|
294 |
+
content = response['choices'][0]['message']['content'].strip()
|
295 |
+
if not content:
|
296 |
+
raise ValueError("Empty response received from the model.")
|
297 |
+
|
298 |
+
# Parse JSON response
|
299 |
+
try:
|
300 |
+
json_response = json.loads(content)
|
301 |
+
for bookmark in batch:
|
302 |
+
url = bookmark['url']
|
303 |
+
if url in json_response:
|
304 |
+
summary = json_response[url].get('summary', '').strip()
|
305 |
+
category = json_response[url].get('category', '').strip()
|
306 |
+
|
307 |
+
if not summary:
|
308 |
+
summary = 'No summary available.'
|
309 |
+
bookmark['summary'] = summary
|
310 |
+
|
311 |
+
if category in CATEGORIES:
|
312 |
+
bookmark['category'] = category
|
313 |
+
else:
|
314 |
+
# Fallback to keyword-based categorization
|
315 |
+
bookmark['category'] = categorize_based_on_summary(summary, url)
|
316 |
+
else:
|
317 |
+
logger.warning(f"No data returned for {url}. Using fallback methods.")
|
318 |
+
bookmark['summary'] = 'No summary available.'
|
319 |
+
bookmark['category'] = 'Uncategorized'
|
320 |
+
|
321 |
+
# Additional keyword-based validation
|
322 |
+
bookmark['category'] = validate_category(bookmark)
|
323 |
+
|
324 |
+
logger.info(f"Processed bookmark: {url}")
|
325 |
+
|
326 |
+
except json.JSONDecodeError:
|
327 |
+
logger.error("Failed to parse JSON response from LLM. Using fallback methods.")
|
328 |
+
for bookmark in batch:
|
329 |
+
bookmark['summary'] = 'No summary available.'
|
330 |
+
bookmark['category'] = categorize_based_on_summary(bookmark.get('summary', ''), bookmark['url'])
|
331 |
+
bookmark['category'] = validate_category(bookmark)
|
332 |
+
|
333 |
+
except Exception as e:
|
334 |
+
logger.error(f"Error processing LLM response: {e}", exc_info=True)
|
335 |
+
for bookmark in batch:
|
336 |
+
bookmark['summary'] = 'No summary available.'
|
337 |
+
bookmark['category'] = 'Uncategorized'
|
338 |
+
|
339 |
+
except openai.error.RateLimitError as e:
|
340 |
+
logger.warning(f"LLM Rate limit reached. Retrying after 60 seconds.")
|
341 |
+
# Re-enqueue the entire batch for retry
|
342 |
+
for bookmark in batch:
|
343 |
+
llm_queue.put(bookmark)
|
344 |
+
time.sleep(60) # Wait before retrying
|
345 |
+
continue # Skip the rest and retry
|
346 |
+
|
347 |
+
except Exception as e:
|
348 |
+
logger.error(f"Error during LLM processing: {e}", exc_info=True)
|
349 |
+
for bookmark in batch:
|
350 |
+
bookmark['summary'] = 'No summary available.'
|
351 |
+
bookmark['category'] = 'Uncategorized'
|
352 |
+
|
353 |
+
finally:
|
354 |
+
# Mark all bookmarks in the batch as done
|
355 |
+
for _ in batch:
|
356 |
+
llm_queue.task_done()
|
357 |
|
358 |
def generate_summary_and_assign_category(bookmark):
|
359 |
"""
|
|
|
689 |
|
690 |
# Rate Limiting
|
691 |
rpm_bucket.wait_for_token()
|
692 |
+
# Estimate tokens: prompt + max_tokens
|
693 |
+
# Here, we assume max_tokens=300 per chatbot response
|
694 |
+
tpm_bucket.wait_for_token(tokens=300)
|
695 |
|
696 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
697 |
k = 5
|