Spaces:
Sleeping
Sleeping
siddhartharya
commited on
Commit
β’
c425950
1
Parent(s):
8ba26a5
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,10 @@ import threading
|
|
19 |
# Import OpenAI library
|
20 |
import openai
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# Set up logging to output to the console
|
23 |
logger = logging.getLogger(__name__)
|
24 |
logger.setLevel(logging.INFO)
|
@@ -34,8 +38,8 @@ console_handler.setFormatter(formatter)
|
|
34 |
# Add the handler to the logger
|
35 |
logger.addHandler(console_handler)
|
36 |
|
37 |
-
# Initialize
|
38 |
-
logger.info("Initializing
|
39 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
40 |
faiss_index = None
|
41 |
bookmarks = []
|
@@ -77,7 +81,11 @@ if not GROQ_API_KEY:
|
|
77 |
logger.error("GROQ_API_KEY environment variable not set.")
|
78 |
|
79 |
openai.api_key = GROQ_API_KEY
|
80 |
-
openai.api_base = "https://api.groq.com/openai/v1"
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def extract_main_content(soup):
|
83 |
"""
|
@@ -159,12 +167,20 @@ def generate_summary_and_assign_category(bookmark):
|
|
159 |
|
160 |
while retry_count < max_retries:
|
161 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
html_content = bookmark.get('html_content', '')
|
163 |
-
|
164 |
-
# Get the HTML soup object from the bookmark
|
165 |
soup = BeautifulSoup(html_content, 'html.parser')
|
166 |
-
|
167 |
-
# Extract metadata and main content
|
168 |
metadata = get_page_metadata(soup)
|
169 |
main_content = extract_main_content(soup)
|
170 |
|
@@ -226,14 +242,14 @@ Category: [One category]
|
|
226 |
return len(text) / 4 # Approximate token estimation
|
227 |
|
228 |
prompt_tokens = estimate_tokens(prompt)
|
229 |
-
max_tokens = 150 #
|
230 |
total_tokens = prompt_tokens + max_tokens
|
231 |
|
232 |
# Calculate required delay
|
233 |
-
tokens_per_minute =
|
234 |
tokens_per_second = tokens_per_minute / 60
|
235 |
required_delay = total_tokens / tokens_per_second
|
236 |
-
sleep_time = max(required_delay,
|
237 |
|
238 |
# Call the LLM via Groq Cloud API
|
239 |
response = openai.ChatCompletion.create(
|
@@ -244,6 +260,7 @@ Category: [One category]
|
|
244 |
max_tokens=int(max_tokens),
|
245 |
temperature=0.5,
|
246 |
)
|
|
|
247 |
content = response['choices'][0]['message']['content'].strip()
|
248 |
if not content:
|
249 |
raise ValueError("Empty response received from the model.")
|
@@ -281,7 +298,7 @@ Category: [One category]
|
|
281 |
except openai.error.RateLimitError as e:
|
282 |
retry_count += 1
|
283 |
wait_time = int(e.headers.get("Retry-After", 5))
|
284 |
-
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
285 |
time.sleep(wait_time)
|
286 |
except Exception as e:
|
287 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
@@ -377,6 +394,7 @@ def vectorize_and_index(bookmarks_list):
|
|
377 |
"""
|
378 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
379 |
"""
|
|
|
380 |
logger.info("Vectorizing summaries and building FAISS index")
|
381 |
try:
|
382 |
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
|
@@ -386,6 +404,7 @@ def vectorize_and_index(bookmarks_list):
|
|
386 |
# Assign unique IDs to each bookmark
|
387 |
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
|
388 |
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
|
|
|
389 |
logger.info("FAISS index built successfully with IDs")
|
390 |
return index
|
391 |
except Exception as e:
|
@@ -441,7 +460,7 @@ def display_bookmarks():
|
|
441 |
logger.info("HTML display generated")
|
442 |
return cards
|
443 |
|
444 |
-
def process_uploaded_file(file):
|
445 |
"""
|
446 |
Process the uploaded bookmarks file.
|
447 |
"""
|
@@ -450,23 +469,23 @@ def process_uploaded_file(file):
|
|
450 |
|
451 |
if file is None:
|
452 |
logger.warning("No file uploaded")
|
453 |
-
return "Please upload a bookmarks HTML file.", '',
|
454 |
|
455 |
try:
|
456 |
file_content = file.decode('utf-8')
|
457 |
except UnicodeDecodeError as e:
|
458 |
logger.error(f"Error decoding the file: {e}", exc_info=True)
|
459 |
-
return "Error decoding the file. Please ensure it's a valid HTML file.", '',
|
460 |
|
461 |
try:
|
462 |
bookmarks = parse_bookmarks(file_content)
|
463 |
except Exception as e:
|
464 |
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
|
465 |
-
return "Error parsing the bookmarks HTML file.", '',
|
466 |
|
467 |
if not bookmarks:
|
468 |
logger.warning("No bookmarks found in the uploaded file")
|
469 |
-
return "No bookmarks found in the uploaded file.", '',
|
470 |
|
471 |
# Assign unique IDs to bookmarks
|
472 |
for idx, bookmark in enumerate(bookmarks):
|
@@ -474,19 +493,19 @@ def process_uploaded_file(file):
|
|
474 |
|
475 |
# Fetch bookmark info concurrently
|
476 |
logger.info("Fetching URL info concurrently")
|
477 |
-
with ThreadPoolExecutor(max_workers=
|
478 |
executor.map(fetch_url_info, bookmarks)
|
479 |
|
480 |
# Process bookmarks concurrently with LLM calls
|
481 |
logger.info("Processing bookmarks with LLM concurrently")
|
482 |
-
with ThreadPoolExecutor(max_workers=
|
483 |
executor.map(generate_summary_and_assign_category, bookmarks)
|
484 |
|
485 |
try:
|
486 |
faiss_index = vectorize_and_index(bookmarks)
|
487 |
except Exception as e:
|
488 |
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
489 |
-
return "Error building search index.", '',
|
490 |
|
491 |
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
|
492 |
logger.info(message)
|
@@ -496,9 +515,12 @@ def process_uploaded_file(file):
|
|
496 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
497 |
for i, bookmark in enumerate(bookmarks)]
|
498 |
|
499 |
-
|
|
|
|
|
|
|
500 |
|
501 |
-
def delete_selected_bookmarks(selected_indices):
|
502 |
"""
|
503 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
504 |
"""
|
@@ -529,16 +551,19 @@ def delete_selected_bookmarks(selected_indices):
|
|
529 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
530 |
for i, bookmark in enumerate(bookmarks)]
|
531 |
|
|
|
|
|
|
|
532 |
return message, gr.update(choices=choices), display_bookmarks()
|
533 |
|
534 |
-
def edit_selected_bookmarks_category(selected_indices, new_category):
|
535 |
"""
|
536 |
Edit category of selected bookmarks.
|
537 |
"""
|
538 |
if not selected_indices:
|
539 |
-
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
|
540 |
if not new_category:
|
541 |
-
return "β οΈ No new category selected.", gr.update(choices=[]), display_bookmarks()
|
542 |
|
543 |
indices = [int(s.split('.')[0])-1 for s in selected_indices]
|
544 |
for idx in indices:
|
@@ -553,7 +578,10 @@ def edit_selected_bookmarks_category(selected_indices, new_category):
|
|
553 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
554 |
for i, bookmark in enumerate(bookmarks)]
|
555 |
|
556 |
-
|
|
|
|
|
|
|
557 |
|
558 |
def export_bookmarks():
|
559 |
"""
|
@@ -591,16 +619,25 @@ def chatbot_response(user_query, chat_history):
|
|
591 |
"""
|
592 |
if not bookmarks or faiss_index is None:
|
593 |
logger.warning("No bookmarks available for chatbot")
|
594 |
-
chat_history.append(
|
595 |
return chat_history
|
596 |
|
597 |
logger.info(f"Chatbot received query: {user_query}")
|
598 |
|
599 |
try:
|
600 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
602 |
-
|
603 |
-
# Search the FAISS index
|
604 |
k = 5 # Number of results to return
|
605 |
distances, ids = faiss_index.search(query_vector, k)
|
606 |
ids = ids.flatten()
|
@@ -611,7 +648,7 @@ def chatbot_response(user_query, chat_history):
|
|
611 |
|
612 |
if not matching_bookmarks:
|
613 |
answer = "No relevant bookmarks found for your query."
|
614 |
-
chat_history.append(
|
615 |
return chat_history
|
616 |
|
617 |
# Format the response
|
@@ -638,11 +675,12 @@ Provide a concise and helpful response.
|
|
638 |
total_tokens = prompt_tokens + max_tokens
|
639 |
|
640 |
# Calculate required delay
|
641 |
-
tokens_per_minute =
|
642 |
tokens_per_second = tokens_per_minute / 60
|
643 |
required_delay = total_tokens / tokens_per_second
|
644 |
-
sleep_time = max(required_delay,
|
645 |
|
|
|
646 |
response = openai.ChatCompletion.create(
|
647 |
model='llama-3.1-70b-versatile', # Using the specified model
|
648 |
messages=[
|
@@ -651,12 +689,13 @@ Provide a concise and helpful response.
|
|
651 |
max_tokens=int(max_tokens),
|
652 |
temperature=0.7,
|
653 |
)
|
|
|
654 |
answer = response['choices'][0]['message']['content'].strip()
|
655 |
logger.info("Chatbot response generated")
|
656 |
time.sleep(sleep_time)
|
657 |
|
658 |
# Append the interaction to chat history
|
659 |
-
chat_history.append(
|
660 |
return chat_history
|
661 |
|
662 |
except openai.error.RateLimitError as e:
|
@@ -667,7 +706,7 @@ Provide a concise and helpful response.
|
|
667 |
except Exception as e:
|
668 |
error_message = f"β οΈ Error processing your query: {str(e)}"
|
669 |
logger.error(error_message, exc_info=True)
|
670 |
-
chat_history.append(
|
671 |
return chat_history
|
672 |
|
673 |
def build_app():
|
@@ -677,53 +716,119 @@ def build_app():
|
|
677 |
try:
|
678 |
logger.info("Building Gradio app")
|
679 |
with gr.Blocks(css="app.css") as demo:
|
|
|
|
|
|
|
680 |
# General Overview
|
681 |
gr.Markdown("""
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
# Upload and Process Bookmarks Tab
|
693 |
with gr.Tab("Upload and Process Bookmarks"):
|
694 |
gr.Markdown("""
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
|
702 |
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
|
703 |
process_button = gr.Button("βοΈ Process Bookmarks")
|
704 |
output_text = gr.Textbox(label="β
Output", interactive=False)
|
705 |
bookmark_display = gr.HTML(label="π Processed Bookmarks")
|
706 |
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
# Chat with Bookmarks Tab
|
708 |
with gr.Tab("Chat with Bookmarks"):
|
709 |
gr.Markdown("""
|
710 |
-
|
711 |
-
Ask questions about your bookmarks and get relevant results.
|
712 |
-
""")
|
713 |
|
714 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
user_input = gr.Textbox(
|
716 |
label="βοΈ Ask about your bookmarks",
|
717 |
placeholder="e.g., Do I have any bookmarks about AI?"
|
718 |
)
|
719 |
chat_button = gr.Button("π¨ Send")
|
720 |
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
# Manage Bookmarks Tab
|
722 |
with gr.Tab("Manage Bookmarks"):
|
723 |
gr.Markdown("""
|
724 |
-
|
725 |
-
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
|
728 |
manage_output = gr.Textbox(label="π Status", interactive=False)
|
729 |
bookmark_selector = gr.CheckboxGroup(
|
@@ -741,38 +846,38 @@ def build_app():
|
|
741 |
delete_button = gr.Button("ποΈ Delete Selected")
|
742 |
edit_category_button = gr.Button("βοΈ Edit Category")
|
743 |
export_button = gr.Button("πΎ Export")
|
|
|
744 |
|
745 |
download_link = gr.File(label="π₯ Download Exported Bookmarks")
|
746 |
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
chat_button.click(
|
755 |
-
chatbot_response,
|
756 |
-
inputs=[user_input, chatbot],
|
757 |
-
outputs=chatbot
|
758 |
-
)
|
759 |
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
)
|
771 |
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
|
777 |
logger.info("Launching Gradio app")
|
778 |
demo.launch(debug=True)
|
|
|
19 |
# Import OpenAI library
|
20 |
import openai
|
21 |
|
22 |
+
# Suppress only the single warning from urllib3 needed.
|
23 |
+
import urllib3
|
24 |
+
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
25 |
+
|
26 |
# Set up logging to output to the console
|
27 |
logger = logging.getLogger(__name__)
|
28 |
logger.setLevel(logging.INFO)
|
|
|
38 |
# Add the handler to the logger
|
39 |
logger.addHandler(console_handler)
|
40 |
|
41 |
+
# Initialize variables and models
|
42 |
+
logger.info("Initializing variables and models")
|
43 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
44 |
faiss_index = None
|
45 |
bookmarks = []
|
|
|
81 |
logger.error("GROQ_API_KEY environment variable not set.")
|
82 |
|
83 |
openai.api_key = GROQ_API_KEY
|
84 |
+
openai.api_base = "https://api.groq.com/openai/v1" # Ensure this is the correct base URL
|
85 |
+
|
86 |
+
# Initialize global variables for rate limiting
|
87 |
+
api_lock = threading.Lock()
|
88 |
+
last_api_call_time = 0
|
89 |
|
90 |
def extract_main_content(soup):
|
91 |
"""
|
|
|
167 |
|
168 |
while retry_count < max_retries:
|
169 |
try:
|
170 |
+
# Rate Limiting Logic
|
171 |
+
with api_lock:
|
172 |
+
global last_api_call_time
|
173 |
+
current_time = time.time()
|
174 |
+
elapsed = current_time - last_api_call_time
|
175 |
+
if elapsed < 2:
|
176 |
+
sleep_duration = 2 - elapsed
|
177 |
+
logger.info(f"Sleeping for {sleep_duration:.2f} seconds to respect rate limits.")
|
178 |
+
time.sleep(sleep_duration)
|
179 |
+
last_api_call_time = time.time()
|
180 |
+
|
181 |
+
# Existing logic to prepare the prompt
|
182 |
html_content = bookmark.get('html_content', '')
|
|
|
|
|
183 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
|
|
184 |
metadata = get_page_metadata(soup)
|
185 |
main_content = extract_main_content(soup)
|
186 |
|
|
|
242 |
return len(text) / 4 # Approximate token estimation
|
243 |
|
244 |
prompt_tokens = estimate_tokens(prompt)
|
245 |
+
max_tokens = 150 # Adjusted from 200
|
246 |
total_tokens = prompt_tokens + max_tokens
|
247 |
|
248 |
# Calculate required delay
|
249 |
+
tokens_per_minute = 40000
|
250 |
tokens_per_second = tokens_per_minute / 60
|
251 |
required_delay = total_tokens / tokens_per_second
|
252 |
+
sleep_time = max(required_delay, 2) # Ensure at least 2 seconds
|
253 |
|
254 |
# Call the LLM via Groq Cloud API
|
255 |
response = openai.ChatCompletion.create(
|
|
|
260 |
max_tokens=int(max_tokens),
|
261 |
temperature=0.5,
|
262 |
)
|
263 |
+
|
264 |
content = response['choices'][0]['message']['content'].strip()
|
265 |
if not content:
|
266 |
raise ValueError("Empty response received from the model.")
|
|
|
298 |
except openai.error.RateLimitError as e:
|
299 |
retry_count += 1
|
300 |
wait_time = int(e.headers.get("Retry-After", 5))
|
301 |
+
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying... (Attempt {retry_count}/{max_retries})")
|
302 |
time.sleep(wait_time)
|
303 |
except Exception as e:
|
304 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
|
|
394 |
"""
|
395 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
396 |
"""
|
397 |
+
global faiss_index
|
398 |
logger.info("Vectorizing summaries and building FAISS index")
|
399 |
try:
|
400 |
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
|
|
|
404 |
# Assign unique IDs to each bookmark
|
405 |
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
|
406 |
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
|
407 |
+
faiss_index = index
|
408 |
logger.info("FAISS index built successfully with IDs")
|
409 |
return index
|
410 |
except Exception as e:
|
|
|
460 |
logger.info("HTML display generated")
|
461 |
return cards
|
462 |
|
463 |
+
def process_uploaded_file(file, state_bookmarks):
|
464 |
"""
|
465 |
Process the uploaded bookmarks file.
|
466 |
"""
|
|
|
469 |
|
470 |
if file is None:
|
471 |
logger.warning("No file uploaded")
|
472 |
+
return "Please upload a bookmarks HTML file.", '', state_bookmarks, display_bookmarks()
|
473 |
|
474 |
try:
|
475 |
file_content = file.decode('utf-8')
|
476 |
except UnicodeDecodeError as e:
|
477 |
logger.error(f"Error decoding the file: {e}", exc_info=True)
|
478 |
+
return "Error decoding the file. Please ensure it's a valid HTML file.", '', state_bookmarks, display_bookmarks()
|
479 |
|
480 |
try:
|
481 |
bookmarks = parse_bookmarks(file_content)
|
482 |
except Exception as e:
|
483 |
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
|
484 |
+
return "Error parsing the bookmarks HTML file.", '', state_bookmarks, display_bookmarks()
|
485 |
|
486 |
if not bookmarks:
|
487 |
logger.warning("No bookmarks found in the uploaded file")
|
488 |
+
return "No bookmarks found in the uploaded file.", '', state_bookmarks, display_bookmarks()
|
489 |
|
490 |
# Assign unique IDs to bookmarks
|
491 |
for idx, bookmark in enumerate(bookmarks):
|
|
|
493 |
|
494 |
# Fetch bookmark info concurrently
|
495 |
logger.info("Fetching URL info concurrently")
|
496 |
+
with ThreadPoolExecutor(max_workers=10) as executor: # Adjusted max_workers as needed
|
497 |
executor.map(fetch_url_info, bookmarks)
|
498 |
|
499 |
# Process bookmarks concurrently with LLM calls
|
500 |
logger.info("Processing bookmarks with LLM concurrently")
|
501 |
+
with ThreadPoolExecutor(max_workers=1) as executor: # Reduced max_workers to 1 to serialize API calls
|
502 |
executor.map(generate_summary_and_assign_category, bookmarks)
|
503 |
|
504 |
try:
|
505 |
faiss_index = vectorize_and_index(bookmarks)
|
506 |
except Exception as e:
|
507 |
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
508 |
+
return "Error building search index.", '', state_bookmarks, display_bookmarks()
|
509 |
|
510 |
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
|
511 |
logger.info(message)
|
|
|
515 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
516 |
for i, bookmark in enumerate(bookmarks)]
|
517 |
|
518 |
+
# Update state
|
519 |
+
state_bookmarks = bookmarks.copy()
|
520 |
+
|
521 |
+
return message, bookmark_html, state_bookmarks, bookmark_html
|
522 |
|
523 |
+
def delete_selected_bookmarks(selected_indices, state_bookmarks):
|
524 |
"""
|
525 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
526 |
"""
|
|
|
551 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
552 |
for i, bookmark in enumerate(bookmarks)]
|
553 |
|
554 |
+
# Update state
|
555 |
+
state_bookmarks = bookmarks.copy()
|
556 |
+
|
557 |
return message, gr.update(choices=choices), display_bookmarks()
|
558 |
|
559 |
+
def edit_selected_bookmarks_category(selected_indices, new_category, state_bookmarks):
|
560 |
"""
|
561 |
Edit category of selected bookmarks.
|
562 |
"""
|
563 |
if not selected_indices:
|
564 |
+
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
|
565 |
if not new_category:
|
566 |
+
return "β οΈ No new category selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks
|
567 |
|
568 |
indices = [int(s.split('.')[0])-1 for s in selected_indices]
|
569 |
for idx in indices:
|
|
|
578 |
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
579 |
for i, bookmark in enumerate(bookmarks)]
|
580 |
|
581 |
+
# Update state
|
582 |
+
state_bookmarks = bookmarks.copy()
|
583 |
+
|
584 |
+
return message, gr.update(choices=choices), display_bookmarks(), state_bookmarks
|
585 |
|
586 |
def export_bookmarks():
|
587 |
"""
|
|
|
619 |
"""
|
620 |
if not bookmarks or faiss_index is None:
|
621 |
logger.warning("No bookmarks available for chatbot")
|
622 |
+
chat_history.append({"role": "assistant", "content": "β οΈ No bookmarks available. Please upload and process your bookmarks first."})
|
623 |
return chat_history
|
624 |
|
625 |
logger.info(f"Chatbot received query: {user_query}")
|
626 |
|
627 |
try:
|
628 |
+
# Rate Limiting Logic
|
629 |
+
with api_lock:
|
630 |
+
global last_api_call_time
|
631 |
+
current_time = time.time()
|
632 |
+
elapsed = current_time - last_api_call_time
|
633 |
+
if elapsed < 2:
|
634 |
+
sleep_duration = 2 - elapsed
|
635 |
+
logger.info(f"Sleeping for {sleep_duration:.2f} seconds to respect rate limits.")
|
636 |
+
time.sleep(sleep_duration)
|
637 |
+
last_api_call_time = time.time()
|
638 |
+
|
639 |
+
# Existing logic to encode the query and search the FAISS index
|
640 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
|
|
|
|
641 |
k = 5 # Number of results to return
|
642 |
distances, ids = faiss_index.search(query_vector, k)
|
643 |
ids = ids.flatten()
|
|
|
648 |
|
649 |
if not matching_bookmarks:
|
650 |
answer = "No relevant bookmarks found for your query."
|
651 |
+
chat_history.append({"role": "assistant", "content": answer})
|
652 |
return chat_history
|
653 |
|
654 |
# Format the response
|
|
|
675 |
total_tokens = prompt_tokens + max_tokens
|
676 |
|
677 |
# Calculate required delay
|
678 |
+
tokens_per_minute = 40000
|
679 |
tokens_per_second = tokens_per_minute / 60
|
680 |
required_delay = total_tokens / tokens_per_second
|
681 |
+
sleep_time = max(required_delay, 2) # Ensure at least 2 seconds
|
682 |
|
683 |
+
# Call the LLM via Groq Cloud API
|
684 |
response = openai.ChatCompletion.create(
|
685 |
model='llama-3.1-70b-versatile', # Using the specified model
|
686 |
messages=[
|
|
|
689 |
max_tokens=int(max_tokens),
|
690 |
temperature=0.7,
|
691 |
)
|
692 |
+
|
693 |
answer = response['choices'][0]['message']['content'].strip()
|
694 |
logger.info("Chatbot response generated")
|
695 |
time.sleep(sleep_time)
|
696 |
|
697 |
# Append the interaction to chat history
|
698 |
+
chat_history.append({"role": "assistant", "content": answer})
|
699 |
return chat_history
|
700 |
|
701 |
except openai.error.RateLimitError as e:
|
|
|
706 |
except Exception as e:
|
707 |
error_message = f"β οΈ Error processing your query: {str(e)}"
|
708 |
logger.error(error_message, exc_info=True)
|
709 |
+
chat_history.append({"role": "assistant", "content": error_message})
|
710 |
return chat_history
|
711 |
|
712 |
def build_app():
|
|
|
716 |
try:
|
717 |
logger.info("Building Gradio app")
|
718 |
with gr.Blocks(css="app.css") as demo:
|
719 |
+
# Initialize state
|
720 |
+
state_bookmarks = gr.State([])
|
721 |
+
|
722 |
# General Overview
|
723 |
gr.Markdown("""
|
724 |
+
# π SmartMarks - AI Browser Bookmarks Manager
|
725 |
+
|
726 |
+
Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.
|
727 |
+
|
728 |
+
---
|
729 |
+
|
730 |
+
## π **How to Use SmartMarks**
|
731 |
+
|
732 |
+
SmartMarks is divided into three main sections:
|
733 |
+
|
734 |
+
1. **π Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
|
735 |
+
2. **π¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
|
736 |
+
3. **π οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
|
737 |
+
|
738 |
+
Navigate through the tabs to explore each feature in detail.
|
739 |
+
""")
|
740 |
|
741 |
# Upload and Process Bookmarks Tab
|
742 |
with gr.Tab("Upload and Process Bookmarks"):
|
743 |
gr.Markdown("""
|
744 |
+
## π **Upload and Process Bookmarks**
|
745 |
+
|
746 |
+
### π **Steps to Upload and Process:**
|
747 |
+
|
748 |
+
1. **Upload Bookmarks File:**
|
749 |
+
- Click on the **"π Upload Bookmarks HTML File"** button.
|
750 |
+
- Select your browser's exported bookmarks HTML file from your device.
|
751 |
+
|
752 |
+
2. **Process Bookmarks:**
|
753 |
+
- After uploading, click on the **"βοΈ Process Bookmarks"** button.
|
754 |
+
- SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.
|
755 |
+
|
756 |
+
3. **View Processed Bookmarks:**
|
757 |
+
- Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
|
758 |
+
""")
|
759 |
|
760 |
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
|
761 |
process_button = gr.Button("βοΈ Process Bookmarks")
|
762 |
output_text = gr.Textbox(label="β
Output", interactive=False)
|
763 |
bookmark_display = gr.HTML(label="π Processed Bookmarks")
|
764 |
|
765 |
+
process_button.click(
|
766 |
+
process_uploaded_file,
|
767 |
+
inputs=[upload, state_bookmarks],
|
768 |
+
outputs=[output_text, bookmark_display, state_bookmarks, bookmark_display]
|
769 |
+
)
|
770 |
+
|
771 |
# Chat with Bookmarks Tab
|
772 |
with gr.Tab("Chat with Bookmarks"):
|
773 |
gr.Markdown("""
|
774 |
+
## π¬ **Chat with Bookmarks**
|
|
|
|
|
775 |
|
776 |
+
### π€ **How to Interact:**
|
777 |
+
|
778 |
+
1. **Enter Your Query:**
|
779 |
+
- In the **"βοΈ Ask about your bookmarks"** textbox, type your question or keyword related to your bookmarks. For example, "Do I have any bookmarks about GenerativeAI?"
|
780 |
+
|
781 |
+
2. **Submit Your Query:**
|
782 |
+
- Click the **"π¨ Send"** button to submit your query.
|
783 |
+
|
784 |
+
3. **Receive AI-Driven Responses:**
|
785 |
+
- SmartMarks will analyze your query and provide relevant bookmarks that match your request, making it easier to find specific links without manual searching.
|
786 |
+
|
787 |
+
4. **View Chat History:**
|
788 |
+
- All your queries and the corresponding AI responses are displayed in the chat history for your reference.
|
789 |
+
""")
|
790 |
+
|
791 |
+
chatbot = gr.Chatbot(label="π¬ Chat with SmartMarks", type='messages')
|
792 |
user_input = gr.Textbox(
|
793 |
label="βοΈ Ask about your bookmarks",
|
794 |
placeholder="e.g., Do I have any bookmarks about AI?"
|
795 |
)
|
796 |
chat_button = gr.Button("π¨ Send")
|
797 |
|
798 |
+
chat_button.click(
|
799 |
+
chatbot_response,
|
800 |
+
inputs=[user_input, chatbot],
|
801 |
+
outputs=chatbot
|
802 |
+
)
|
803 |
+
|
804 |
# Manage Bookmarks Tab
|
805 |
with gr.Tab("Manage Bookmarks"):
|
806 |
gr.Markdown("""
|
807 |
+
## π οΈ **Manage Bookmarks**
|
808 |
+
|
809 |
+
### ποΈ **Features:**
|
810 |
+
|
811 |
+
1. **View Bookmarks:**
|
812 |
+
- All your processed bookmarks are displayed here with their respective categories and summaries.
|
813 |
+
|
814 |
+
2. **Select Bookmarks:**
|
815 |
+
- Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.
|
816 |
+
|
817 |
+
3. **Delete Selected Bookmarks:**
|
818 |
+
- After selecting the desired bookmarks, click the **"ποΈ Delete Selected"** button to remove them from your list.
|
819 |
+
|
820 |
+
4. **Edit Categories:**
|
821 |
+
- Select the bookmarks you want to re-categorize.
|
822 |
+
- Choose a new category from the dropdown menu labeled **"π New Category"**.
|
823 |
+
- Click the **"βοΈ Edit Category"** button to update their categories.
|
824 |
+
|
825 |
+
5. **Export Bookmarks:**
|
826 |
+
- Click the **"πΎ Export"** button to download your updated bookmarks as an HTML file.
|
827 |
+
- This file can be uploaded back to your browser to reflect the changes made within SmartMarks.
|
828 |
+
|
829 |
+
6. **Refresh Bookmarks:**
|
830 |
+
- Click the **"π Refresh Bookmarks"** button to ensure the latest state is reflected in the display.
|
831 |
+
""")
|
832 |
|
833 |
manage_output = gr.Textbox(label="π Status", interactive=False)
|
834 |
bookmark_selector = gr.CheckboxGroup(
|
|
|
846 |
delete_button = gr.Button("ποΈ Delete Selected")
|
847 |
edit_category_button = gr.Button("βοΈ Edit Category")
|
848 |
export_button = gr.Button("πΎ Export")
|
849 |
+
refresh_button = gr.Button("π Refresh Bookmarks")
|
850 |
|
851 |
download_link = gr.File(label="π₯ Download Exported Bookmarks")
|
852 |
|
853 |
+
# Define button actions
|
854 |
+
delete_button.click(
|
855 |
+
delete_selected_bookmarks,
|
856 |
+
inputs=[bookmark_selector, state_bookmarks],
|
857 |
+
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
|
858 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
859 |
|
860 |
+
edit_category_button.click(
|
861 |
+
edit_selected_bookmarks_category,
|
862 |
+
inputs=[bookmark_selector, new_category, state_bookmarks],
|
863 |
+
outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
|
864 |
+
)
|
865 |
|
866 |
+
export_button.click(
|
867 |
+
export_bookmarks,
|
868 |
+
outputs=download_link
|
869 |
+
)
|
|
|
870 |
|
871 |
+
refresh_button.click(
|
872 |
+
lambda state_bookmarks: (
|
873 |
+
[
|
874 |
+
f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(state_bookmarks)
|
875 |
+
],
|
876 |
+
display_bookmarks()
|
877 |
+
),
|
878 |
+
inputs=[state_bookmarks],
|
879 |
+
outputs=[bookmark_selector, bookmark_display_manage]
|
880 |
+
)
|
881 |
|
882 |
logger.info("Launching Gradio app")
|
883 |
demo.launch(debug=True)
|