Spaces:
Running
Running
siddhartharya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -19,10 +19,6 @@ import threading
|
|
19 |
# Import OpenAI library
|
20 |
import openai
|
21 |
|
22 |
-
# Suppress only the single warning from urllib3 needed.
|
23 |
-
import urllib3
|
24 |
-
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
25 |
-
|
26 |
# Set up logging to output to the console
|
27 |
logger = logging.getLogger(__name__)
|
28 |
logger.setLevel(logging.INFO)
|
@@ -38,8 +34,9 @@ console_handler.setFormatter(formatter)
|
|
38 |
# Add the handler to the logger
|
39 |
logger.addHandler(console_handler)
|
40 |
|
41 |
-
# Initialize variables
|
42 |
-
logger.info("Initializing variables")
|
|
|
43 |
faiss_index = None
|
44 |
bookmarks = []
|
45 |
fetch_cache = {}
|
@@ -80,21 +77,7 @@ if not GROQ_API_KEY:
|
|
80 |
logger.error("GROQ_API_KEY environment variable not set.")
|
81 |
|
82 |
openai.api_key = GROQ_API_KEY
|
83 |
-
openai.api_base = "https://api.groq.com/openai/v1"
|
84 |
-
|
85 |
-
# Initialize semaphore for rate limiting (allowing 1 concurrent API call)
|
86 |
-
api_semaphore = threading.Semaphore(1)
|
87 |
-
|
88 |
-
# Global variables for models to enable lazy loading
|
89 |
-
embedding_model = None
|
90 |
-
|
91 |
-
def get_embedding_model():
|
92 |
-
global embedding_model
|
93 |
-
if embedding_model is None:
|
94 |
-
logger.info("Loading SentenceTransformer model...")
|
95 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
96 |
-
logger.info("SentenceTransformer model loaded.")
|
97 |
-
return embedding_model
|
98 |
|
99 |
def extract_main_content(soup):
|
100 |
"""
|
@@ -171,20 +154,21 @@ def generate_summary_and_assign_category(bookmark):
|
|
171 |
"""
|
172 |
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
|
173 |
|
174 |
-
max_retries =
|
175 |
retry_count = 0
|
176 |
-
base_wait = 1 # Initial wait time in seconds
|
177 |
|
178 |
while retry_count < max_retries:
|
179 |
try:
|
180 |
html_content = bookmark.get('html_content', '')
|
181 |
|
182 |
-
#
|
183 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
|
|
184 |
metadata = get_page_metadata(soup)
|
185 |
main_content = extract_main_content(soup)
|
186 |
|
187 |
-
# Prepare prompt
|
188 |
content_parts = []
|
189 |
if metadata['title']:
|
190 |
content_parts.append(f"Title: {metadata['title']}")
|
@@ -197,17 +181,18 @@ def generate_summary_and_assign_category(bookmark):
|
|
197 |
|
198 |
content_text = '\n'.join(content_parts)
|
199 |
|
200 |
-
#
|
201 |
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
|
202 |
if not content_text or len(content_text.split()) < 50:
|
203 |
use_prior_knowledge = True
|
204 |
-
logger.info(f"Content for {bookmark.get('url')} is insufficient.
|
205 |
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
|
206 |
use_prior_knowledge = True
|
207 |
-
logger.info(f"Content for {bookmark.get('url')} contains error messages.
|
208 |
else:
|
209 |
use_prior_knowledge = False
|
210 |
|
|
|
211 |
if use_prior_knowledge:
|
212 |
prompt = f"""
|
213 |
You are a knowledgeable assistant with up-to-date information as of 2023.
|
@@ -236,34 +221,52 @@ Summary: [Your summary]
|
|
236 |
Category: [One category]
|
237 |
"""
|
238 |
|
239 |
-
#
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
content = response['choices'][0]['message']['content'].strip()
|
256 |
if not content:
|
257 |
raise ValueError("Empty response received from the model.")
|
258 |
|
259 |
-
# Parse response
|
260 |
summary_match = re.search(r"Summary:\s*(.*)", content)
|
261 |
category_match = re.search(r"Category:\s*(.*)", content)
|
262 |
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
#
|
267 |
summary_lower = bookmark['summary'].lower()
|
268 |
url_lower = bookmark['url'].lower()
|
269 |
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
|
@@ -272,27 +275,19 @@ Category: [One category]
|
|
272 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
273 |
|
274 |
logger.info("Successfully generated summary and assigned category")
|
275 |
-
|
276 |
-
#
|
277 |
-
time.sleep(1) # Wait for 1 second before the next API call
|
278 |
-
|
279 |
-
break # Exit loop on success
|
280 |
|
281 |
except openai.error.RateLimitError as e:
|
282 |
retry_count += 1
|
283 |
-
wait_time =
|
284 |
-
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...
|
285 |
time.sleep(wait_time)
|
286 |
except Exception as e:
|
287 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
288 |
bookmark['summary'] = 'No summary available.'
|
289 |
bookmark['category'] = 'Uncategorized'
|
290 |
-
break # Exit loop on
|
291 |
-
|
292 |
-
if retry_count == max_retries:
|
293 |
-
logger.error(f"Failed to generate summary for {bookmark.get('url')} after {max_retries} attempts.")
|
294 |
-
bookmark['summary'] = 'No summary available.'
|
295 |
-
bookmark['category'] = 'Uncategorized'
|
296 |
|
297 |
def parse_bookmarks(file_content):
|
298 |
"""
|
@@ -332,7 +327,7 @@ def fetch_url_info(bookmark):
|
|
332 |
'User-Agent': 'Mozilla/5.0',
|
333 |
'Accept-Language': 'en-US,en;q=0.9',
|
334 |
}
|
335 |
-
response = requests.get(url, headers=headers, timeout=5, verify=
|
336 |
bookmark['etag'] = response.headers.get('ETag', 'N/A')
|
337 |
bookmark['status_code'] = response.status_code
|
338 |
|
@@ -352,13 +347,6 @@ def fetch_url_info(bookmark):
|
|
352 |
bookmark['description'] = ''
|
353 |
logger.info(f"Fetched information for {url}")
|
354 |
|
355 |
-
except requests.exceptions.SSLError as e:
|
356 |
-
bookmark['dead_link'] = True
|
357 |
-
bookmark['etag'] = 'N/A'
|
358 |
-
bookmark['status_code'] = 'SSL Error'
|
359 |
-
bookmark['description'] = ''
|
360 |
-
bookmark['html_content'] = ''
|
361 |
-
logger.error(f"SSL error fetching URL info for {url}: {e}", exc_info=True)
|
362 |
except requests.exceptions.Timeout:
|
363 |
bookmark['dead_link'] = False # Mark as 'Unknown' instead of 'Dead'
|
364 |
bookmark['etag'] = 'N/A'
|
@@ -389,26 +377,17 @@ def vectorize_and_index(bookmarks_list):
|
|
389 |
"""
|
390 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
391 |
"""
|
392 |
-
global faiss_index
|
393 |
logger.info("Vectorizing summaries and building FAISS index")
|
394 |
try:
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
# Check for any empty summaries and log them
|
399 |
-
for i, summary in enumerate(summaries):
|
400 |
-
if not summary:
|
401 |
-
logger.warning(f"Bookmark at index {i} is missing a summary.")
|
402 |
-
summaries[i] = 'No summary available.'
|
403 |
-
|
404 |
-
embeddings = get_embedding_model().encode(summaries).astype('float32')
|
405 |
dimension = embeddings.shape[1]
|
406 |
-
|
407 |
-
faiss_index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
|
408 |
# Assign unique IDs to each bookmark
|
409 |
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
|
410 |
-
|
411 |
logger.info("FAISS index built successfully with IDs")
|
|
|
412 |
except Exception as e:
|
413 |
logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
|
414 |
raise
|
@@ -462,7 +441,7 @@ def display_bookmarks():
|
|
462 |
logger.info("HTML display generated")
|
463 |
return cards
|
464 |
|
465 |
-
def process_uploaded_file(file
|
466 |
"""
|
467 |
Process the uploaded bookmarks file.
|
468 |
"""
|
@@ -471,39 +450,23 @@ def process_uploaded_file(file, state_bookmarks):
|
|
471 |
|
472 |
if file is None:
|
473 |
logger.warning("No file uploaded")
|
474 |
-
return (
|
475 |
-
"β οΈ Please upload a bookmarks HTML file.",
|
476 |
-
"",
|
477 |
-
state_bookmarks # Return the unchanged state
|
478 |
-
)
|
479 |
|
480 |
try:
|
481 |
file_content = file.decode('utf-8')
|
482 |
except UnicodeDecodeError as e:
|
483 |
-
logger.error(f"Error decoding the file: {e}")
|
484 |
-
return (
|
485 |
-
"β οΈ Error decoding the file. Please ensure it's a valid HTML file.",
|
486 |
-
"",
|
487 |
-
state_bookmarks # Return the unchanged state
|
488 |
-
)
|
489 |
|
490 |
try:
|
491 |
bookmarks = parse_bookmarks(file_content)
|
492 |
except Exception as e:
|
493 |
-
logger.error(f"Error parsing bookmarks: {e}")
|
494 |
-
return (
|
495 |
-
"β οΈ Error parsing the bookmarks HTML file.",
|
496 |
-
"",
|
497 |
-
state_bookmarks # Return the unchanged state
|
498 |
-
)
|
499 |
|
500 |
if not bookmarks:
|
501 |
logger.warning("No bookmarks found in the uploaded file")
|
502 |
-
return (
|
503 |
-
"β οΈ No bookmarks found in the uploaded file.",
|
504 |
-
"",
|
505 |
-
state_bookmarks # Return the unchanged state
|
506 |
-
)
|
507 |
|
508 |
# Assign unique IDs to bookmarks
|
509 |
for idx, bookmark in enumerate(bookmarks):
|
@@ -511,135 +474,94 @@ def process_uploaded_file(file, state_bookmarks):
|
|
511 |
|
512 |
# Fetch bookmark info concurrently
|
513 |
logger.info("Fetching URL info concurrently")
|
514 |
-
with ThreadPoolExecutor(max_workers=
|
515 |
executor.map(fetch_url_info, bookmarks)
|
516 |
|
517 |
-
#
|
518 |
-
logger.info("
|
519 |
-
with ThreadPoolExecutor(max_workers=
|
520 |
executor.map(generate_summary_and_assign_category, bookmarks)
|
521 |
|
522 |
-
# Log bookmarks to verify 'summary' and 'category' presence
|
523 |
-
for idx, bookmark in enumerate(bookmarks):
|
524 |
-
if 'summary' not in bookmark or 'category' not in bookmark:
|
525 |
-
logger.error(f"Bookmark at index {idx} is missing 'summary' or 'category': {bookmark}")
|
526 |
-
else:
|
527 |
-
logger.debug(f"Bookmark {idx} processed with summary and category.")
|
528 |
-
|
529 |
try:
|
530 |
-
vectorize_and_index(bookmarks)
|
531 |
except Exception as e:
|
532 |
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
533 |
-
return (
|
534 |
-
"β οΈ Error building search index.",
|
535 |
-
"",
|
536 |
-
state_bookmarks # Return the unchanged state
|
537 |
-
)
|
538 |
|
539 |
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
|
540 |
logger.info(message)
|
541 |
|
542 |
# Generate displays and updates
|
543 |
bookmark_html = display_bookmarks()
|
544 |
-
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
|
|
545 |
|
546 |
-
return (
|
547 |
-
message,
|
548 |
-
bookmark_html,
|
549 |
-
bookmarks.copy() # Return the updated state
|
550 |
-
)
|
551 |
|
552 |
-
def delete_selected_bookmarks(selected_indices
|
553 |
"""
|
554 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
555 |
"""
|
556 |
global bookmarks, faiss_index
|
557 |
if not selected_indices:
|
558 |
-
return "β οΈ No bookmarks selected.", gr.update(choices=[]),
|
559 |
|
560 |
ids_to_delete = []
|
561 |
indices_to_delete = []
|
562 |
for s in selected_indices:
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
logger.info(f"Deleting bookmark at index {idx + 1}")
|
570 |
-
except ValueError:
|
571 |
-
logger.error(f"Invalid selection format: {s}")
|
572 |
|
573 |
# Remove vectors from FAISS index
|
574 |
if faiss_index is not None and ids_to_delete:
|
575 |
faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))
|
576 |
|
577 |
# Remove bookmarks from the list (reverse order to avoid index shifting)
|
578 |
-
bookmarks = state_bookmarks.copy()
|
579 |
for idx in sorted(indices_to_delete, reverse=True):
|
580 |
bookmarks.pop(idx)
|
581 |
|
582 |
message = "ποΈ Selected bookmarks deleted successfully."
|
583 |
logger.info(message)
|
584 |
-
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
|
|
585 |
|
586 |
-
return (
|
587 |
-
message,
|
588 |
-
gr.update(choices=choices, value=[]),
|
589 |
-
bookmark_display_manage.update(value=display_bookmarks()),
|
590 |
-
bookmarks.copy() # Return the updated state
|
591 |
-
)
|
592 |
|
593 |
-
def edit_selected_bookmarks_category(selected_indices, new_category
|
594 |
"""
|
595 |
Edit category of selected bookmarks.
|
596 |
"""
|
597 |
if not selected_indices:
|
598 |
-
return (
|
599 |
-
"β οΈ No bookmarks selected.",
|
600 |
-
gr.update(choices=[]),
|
601 |
-
bookmark_display_manage.update(value=display_bookmarks()),
|
602 |
-
state_bookmarks
|
603 |
-
)
|
604 |
if not new_category:
|
605 |
-
return (
|
606 |
-
"β οΈ No new category selected.",
|
607 |
-
gr.update(choices=[]),
|
608 |
-
bookmark_display_manage.update(value=display_bookmarks()),
|
609 |
-
state_bookmarks
|
610 |
-
)
|
611 |
|
612 |
-
|
613 |
-
for
|
614 |
-
|
615 |
-
idx
|
616 |
-
|
617 |
-
bookmarks[idx]['category'] = new_category
|
618 |
-
logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
|
619 |
-
except ValueError:
|
620 |
-
logger.error(f"Invalid selection format: {s}")
|
621 |
|
622 |
message = "βοΈ Category updated for selected bookmarks."
|
623 |
logger.info(message)
|
624 |
|
625 |
# Update choices and display
|
626 |
-
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
|
|
627 |
|
628 |
-
return (
|
629 |
-
message,
|
630 |
-
gr.update(choices=choices, value=[]),
|
631 |
-
bookmark_display_manage.update(value=display_bookmarks()),
|
632 |
-
bookmarks.copy() # Return the updated state
|
633 |
-
)
|
634 |
|
635 |
-
def export_bookmarks(
|
636 |
"""
|
637 |
Export bookmarks to an HTML file.
|
638 |
"""
|
639 |
-
bookmarks = state_bookmarks
|
640 |
if not bookmarks:
|
641 |
logger.warning("No bookmarks to export")
|
642 |
-
return
|
643 |
|
644 |
try:
|
645 |
logger.info("Exporting bookmarks to HTML")
|
@@ -653,36 +575,30 @@ def export_bookmarks(state_bookmarks):
|
|
653 |
dl.append(dt)
|
654 |
soup.append(dl)
|
655 |
html_content = str(soup)
|
656 |
-
#
|
657 |
-
|
658 |
-
|
|
|
659 |
logger.info("Bookmarks exported successfully")
|
660 |
-
return
|
661 |
except Exception as e:
|
662 |
-
logger.error(f"Error exporting bookmarks: {e}")
|
663 |
-
return
|
664 |
|
665 |
-
def chatbot_response(user_query, chat_history
|
666 |
"""
|
667 |
Generate chatbot response using the FAISS index and embeddings, maintaining chat history.
|
668 |
"""
|
669 |
-
if not
|
670 |
-
logger.warning("GROQ_API_KEY not set.")
|
671 |
-
return chat_history + [{"role": "system", "content": "β οΈ API key not set. Please set the GROQ_API_KEY environment variable in the Hugging Face Space settings."}]
|
672 |
-
|
673 |
-
bookmarks = state_bookmarks
|
674 |
-
if not bookmarks:
|
675 |
logger.warning("No bookmarks available for chatbot")
|
676 |
-
|
|
|
677 |
|
678 |
logger.info(f"Chatbot received query: {user_query}")
|
679 |
|
680 |
try:
|
681 |
-
# Ensure embedding model is loaded
|
682 |
-
model = get_embedding_model()
|
683 |
-
|
684 |
# Encode the user query
|
685 |
-
query_vector =
|
686 |
|
687 |
# Search the FAISS index
|
688 |
k = 5 # Number of results to return
|
@@ -694,75 +610,65 @@ def chatbot_response(user_query, chat_history, state_bookmarks):
|
|
694 |
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
|
695 |
|
696 |
if not matching_bookmarks:
|
697 |
-
|
698 |
-
|
699 |
-
return chat_history
|
700 |
|
701 |
# Format the response
|
702 |
-
bookmarks_info = "\n
|
703 |
-
f"
|
704 |
for bookmark in matching_bookmarks
|
705 |
])
|
706 |
|
707 |
-
#
|
708 |
prompt = f"""
|
709 |
A user asked: "{user_query}"
|
710 |
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
|
711 |
-
|
712 |
Bookmarks:
|
713 |
{bookmarks_info}
|
714 |
-
|
715 |
Provide a concise and helpful response.
|
716 |
"""
|
717 |
|
718 |
-
#
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
# If max retries reached
|
754 |
-
error_message = "β οΈ Unable to process your query at the moment. Please try again later."
|
755 |
-
logger.error(error_message)
|
756 |
-
return chat_history + [{"role": "assistant", "content": error_message}]
|
757 |
-
|
758 |
-
finally:
|
759 |
-
# Release semaphore after API call
|
760 |
-
api_semaphore.release()
|
761 |
-
|
762 |
except Exception as e:
|
763 |
error_message = f"β οΈ Error processing your query: {str(e)}"
|
764 |
logger.error(error_message, exc_info=True)
|
765 |
-
|
|
|
766 |
|
767 |
def build_app():
|
768 |
"""
|
@@ -770,186 +676,109 @@ def build_app():
|
|
770 |
"""
|
771 |
try:
|
772 |
logger.info("Building Gradio app")
|
773 |
-
with gr.Blocks(css="app.css") as demo:
|
774 |
-
# Shared states
|
775 |
-
state_bookmarks = gr.State([])
|
776 |
-
chat_history = gr.State([])
|
777 |
-
|
778 |
# General Overview
|
779 |
gr.Markdown("""
|
780 |
-
# π SmartMarks - AI Browser Bookmarks Manager
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
1. **π Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
|
791 |
-
2. **π¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
|
792 |
-
3. **π οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
|
793 |
-
|
794 |
-
Navigate through the tabs to explore each feature in detail.
|
795 |
-
""")
|
796 |
|
797 |
# Upload and Process Bookmarks Tab
|
798 |
with gr.Tab("Upload and Process Bookmarks"):
|
799 |
gr.Markdown("""
|
800 |
-
## π **Upload and Process Bookmarks**
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
- Select your browser's exported bookmarks HTML file from your device.
|
807 |
-
|
808 |
-
2. **Process Bookmarks:**
|
809 |
-
- After uploading, click on the **"βοΈ Process Bookmarks"** button.
|
810 |
-
- SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.
|
811 |
-
|
812 |
-
3. **View Processed Bookmarks:**
|
813 |
-
- Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
|
814 |
-
""")
|
815 |
|
816 |
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
|
817 |
process_button = gr.Button("βοΈ Process Bookmarks")
|
818 |
output_text = gr.Textbox(label="β
Output", interactive=False)
|
819 |
bookmark_display = gr.HTML(label="π Processed Bookmarks")
|
820 |
|
821 |
-
process_button.click(
|
822 |
-
process_uploaded_file,
|
823 |
-
inputs=[upload, state_bookmarks],
|
824 |
-
outputs=[output_text, bookmark_display, state_bookmarks]
|
825 |
-
)
|
826 |
-
|
827 |
# Chat with Bookmarks Tab
|
828 |
with gr.Tab("Chat with Bookmarks"):
|
829 |
gr.Markdown("""
|
830 |
-
## π¬ **Chat with Bookmarks**
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
- Click the **"π¨ Send"** button to submit your query.
|
839 |
-
|
840 |
-
3. **Receive AI-Driven Responses:**
|
841 |
-
- SmartMarks will analyze your query and provide relevant bookmarks that match your request, making it easier to find specific links without manual searching.
|
842 |
-
|
843 |
-
4. **View Chat History:**
|
844 |
-
- All your queries and the corresponding AI responses are displayed in the chat history for your reference.
|
845 |
-
""")
|
846 |
-
|
847 |
-
with gr.Row():
|
848 |
-
chat_history_display = gr.Chatbot(label="π¨οΈ Chat History", type="messages")
|
849 |
-
with gr.Column(scale=1):
|
850 |
-
chat_input = gr.Textbox(
|
851 |
-
label="βοΈ Ask about your bookmarks",
|
852 |
-
placeholder="e.g., Do I have any bookmarks about GenerativeAI?",
|
853 |
-
lines=1,
|
854 |
-
interactive=True
|
855 |
-
)
|
856 |
-
chat_button = gr.Button("π¨ Send")
|
857 |
-
|
858 |
-
# When user presses Enter in chat_input
|
859 |
-
chat_input.submit(
|
860 |
-
chatbot_response,
|
861 |
-
inputs=[chat_input, chat_history_display, state_bookmarks],
|
862 |
-
outputs=chat_history_display
|
863 |
-
)
|
864 |
-
|
865 |
-
# When user clicks Send button
|
866 |
-
chat_button.click(
|
867 |
-
chatbot_response,
|
868 |
-
inputs=[chat_input, chat_history_display, state_bookmarks],
|
869 |
-
outputs=chat_history_display
|
870 |
)
|
|
|
871 |
|
872 |
# Manage Bookmarks Tab
|
873 |
with gr.Tab("Manage Bookmarks"):
|
874 |
gr.Markdown("""
|
875 |
-
## π οΈ **Manage Bookmarks**
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
1. **View Bookmarks:**
|
880 |
-
- All your processed bookmarks are displayed here with their respective categories and summaries.
|
881 |
-
|
882 |
-
2. **Select Bookmarks:**
|
883 |
-
- Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.
|
884 |
-
|
885 |
-
3. **Delete Selected Bookmarks:**
|
886 |
-
- After selecting the desired bookmarks, click the **"ποΈ Delete Selected"** button to remove them from your list.
|
887 |
-
|
888 |
-
4. **Edit Categories:**
|
889 |
-
- Select the bookmarks you want to re-categorize.
|
890 |
-
- Choose a new category from the dropdown menu labeled **"π New Category"**.
|
891 |
-
- Click the **"βοΈ Edit Category"** button to update their categories.
|
892 |
-
|
893 |
-
5. **Export Bookmarks:**
|
894 |
-
- Click the **"πΎ Export"** button to download your updated bookmarks as an HTML file.
|
895 |
-
- This file can be uploaded back to your browser to reflect the changes made within SmartMarks.
|
896 |
-
|
897 |
-
6. **Refresh Bookmarks:**
|
898 |
-
- Click the **"π Refresh Bookmarks"** button to ensure the latest state is reflected in the display.
|
899 |
-
""")
|
900 |
|
901 |
manage_output = gr.Textbox(label="π Status", interactive=False)
|
902 |
bookmark_selector = gr.CheckboxGroup(
|
903 |
label="β
Select Bookmarks",
|
904 |
-
choices=[]
|
905 |
-
|
|
|
|
|
|
|
|
|
906 |
)
|
907 |
-
new_category_input = gr.Dropdown(label="π New Category", choices=CATEGORIES, value="Uncategorized")
|
908 |
bookmark_display_manage = gr.HTML(label="π Bookmarks")
|
909 |
|
910 |
with gr.Row():
|
911 |
delete_button = gr.Button("ποΈ Delete Selected")
|
912 |
edit_category_button = gr.Button("βοΈ Edit Category")
|
913 |
export_button = gr.Button("πΎ Export")
|
914 |
-
refresh_button = gr.Button("π Refresh Bookmarks")
|
915 |
-
|
916 |
-
download_link = gr.HTML(label="π₯ Download Exported Bookmarks")
|
917 |
-
|
918 |
-
# Define button actions
|
919 |
-
delete_button.click(
|
920 |
-
delete_selected_bookmarks,
|
921 |
-
inputs=[bookmark_selector, state_bookmarks],
|
922 |
-
outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
|
923 |
-
)
|
924 |
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
947 |
|
948 |
logger.info("Launching Gradio app")
|
949 |
demo.launch(debug=True)
|
950 |
except Exception as e:
|
951 |
-
logger.error(f"Error building
|
952 |
-
print(f"Error building
|
953 |
|
954 |
if __name__ == "__main__":
|
955 |
build_app()
|
|
|
19 |
# Import OpenAI library
|
20 |
import openai
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# Set up logging to output to the console
|
23 |
logger = logging.getLogger(__name__)
|
24 |
logger.setLevel(logging.INFO)
|
|
|
34 |
# Add the handler to the logger
|
35 |
logger.addHandler(console_handler)
|
36 |
|
37 |
+
# Initialize models and variables
|
38 |
+
logger.info("Initializing models and variables")
|
39 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
40 |
faiss_index = None
|
41 |
bookmarks = []
|
42 |
fetch_cache = {}
|
|
|
77 |
logger.error("GROQ_API_KEY environment variable not set.")
|
78 |
|
79 |
openai.api_key = GROQ_API_KEY
|
80 |
+
openai.api_base = "https://api.groq.com/openai/v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def extract_main_content(soup):
|
83 |
"""
|
|
|
154 |
"""
|
155 |
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
|
156 |
|
157 |
+
max_retries = 3
|
158 |
retry_count = 0
|
|
|
159 |
|
160 |
while retry_count < max_retries:
|
161 |
try:
|
162 |
html_content = bookmark.get('html_content', '')
|
163 |
|
164 |
+
# Get the HTML soup object from the bookmark
|
165 |
soup = BeautifulSoup(html_content, 'html.parser')
|
166 |
+
|
167 |
+
# Extract metadata and main content
|
168 |
metadata = get_page_metadata(soup)
|
169 |
main_content = extract_main_content(soup)
|
170 |
|
171 |
+
# Prepare content for the prompt
|
172 |
content_parts = []
|
173 |
if metadata['title']:
|
174 |
content_parts.append(f"Title: {metadata['title']}")
|
|
|
181 |
|
182 |
content_text = '\n'.join(content_parts)
|
183 |
|
184 |
+
# Detect insufficient or erroneous content
|
185 |
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
|
186 |
if not content_text or len(content_text.split()) < 50:
|
187 |
use_prior_knowledge = True
|
188 |
+
logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
|
189 |
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
|
190 |
use_prior_knowledge = True
|
191 |
+
logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
|
192 |
else:
|
193 |
use_prior_knowledge = False
|
194 |
|
195 |
+
# Shortened prompts
|
196 |
if use_prior_knowledge:
|
197 |
prompt = f"""
|
198 |
You are a knowledgeable assistant with up-to-date information as of 2023.
|
|
|
221 |
Category: [One category]
|
222 |
"""
|
223 |
|
224 |
+
# Estimate tokens
|
225 |
+
def estimate_tokens(text):
|
226 |
+
return len(text) / 4 # Approximate token estimation
|
227 |
+
|
228 |
+
prompt_tokens = estimate_tokens(prompt)
|
229 |
+
max_tokens = 150 # Reduced from 200
|
230 |
+
total_tokens = prompt_tokens + max_tokens
|
231 |
+
|
232 |
+
# Calculate required delay
|
233 |
+
tokens_per_minute = 60000 # Adjust based on your rate limit
|
234 |
+
tokens_per_second = tokens_per_minute / 60
|
235 |
+
required_delay = total_tokens / tokens_per_second
|
236 |
+
sleep_time = max(required_delay, 1)
|
237 |
+
|
238 |
+
# Call the LLM via Groq Cloud API
|
239 |
+
response = openai.ChatCompletion.create(
|
240 |
+
model='llama-3.1-70b-versatile', # Using the specified model
|
241 |
+
messages=[
|
242 |
+
{"role": "user", "content": prompt}
|
243 |
+
],
|
244 |
+
max_tokens=int(max_tokens),
|
245 |
+
temperature=0.5,
|
246 |
+
)
|
247 |
content = response['choices'][0]['message']['content'].strip()
|
248 |
if not content:
|
249 |
raise ValueError("Empty response received from the model.")
|
250 |
|
251 |
+
# Parse the response
|
252 |
summary_match = re.search(r"Summary:\s*(.*)", content)
|
253 |
category_match = re.search(r"Category:\s*(.*)", content)
|
254 |
|
255 |
+
if summary_match:
|
256 |
+
bookmark['summary'] = summary_match.group(1).strip()
|
257 |
+
else:
|
258 |
+
bookmark['summary'] = 'No summary available.'
|
259 |
+
|
260 |
+
if category_match:
|
261 |
+
category = category_match.group(1).strip().strip('"')
|
262 |
+
if category in CATEGORIES:
|
263 |
+
bookmark['category'] = category
|
264 |
+
else:
|
265 |
+
bookmark['category'] = 'Uncategorized'
|
266 |
+
else:
|
267 |
+
bookmark['category'] = 'Uncategorized'
|
268 |
|
269 |
+
# Simple keyword-based validation (Optional)
|
270 |
summary_lower = bookmark['summary'].lower()
|
271 |
url_lower = bookmark['url'].lower()
|
272 |
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
|
|
|
275 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
276 |
|
277 |
logger.info("Successfully generated summary and assigned category")
|
278 |
+
time.sleep(sleep_time)
|
279 |
+
break # Exit the retry loop upon success
|
|
|
|
|
|
|
280 |
|
281 |
except openai.error.RateLimitError as e:
|
282 |
retry_count += 1
|
283 |
+
wait_time = int(e.headers.get("Retry-After", 5))
|
284 |
+
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
285 |
time.sleep(wait_time)
|
286 |
except Exception as e:
|
287 |
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
288 |
bookmark['summary'] = 'No summary available.'
|
289 |
bookmark['category'] = 'Uncategorized'
|
290 |
+
break # Exit the retry loop on other exceptions
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
def parse_bookmarks(file_content):
|
293 |
"""
|
|
|
327 |
'User-Agent': 'Mozilla/5.0',
|
328 |
'Accept-Language': 'en-US,en;q=0.9',
|
329 |
}
|
330 |
+
response = requests.get(url, headers=headers, timeout=5, verify=False, allow_redirects=True)
|
331 |
bookmark['etag'] = response.headers.get('ETag', 'N/A')
|
332 |
bookmark['status_code'] = response.status_code
|
333 |
|
|
|
347 |
bookmark['description'] = ''
|
348 |
logger.info(f"Fetched information for {url}")
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
except requests.exceptions.Timeout:
|
351 |
bookmark['dead_link'] = False # Mark as 'Unknown' instead of 'Dead'
|
352 |
bookmark['etag'] = 'N/A'
|
|
|
377 |
"""
|
378 |
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
|
379 |
"""
|
|
|
380 |
logger.info("Vectorizing summaries and building FAISS index")
|
381 |
try:
|
382 |
+
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
|
383 |
+
embeddings = embedding_model.encode(summaries)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
dimension = embeddings.shape[1]
|
385 |
+
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
|
|
|
386 |
# Assign unique IDs to each bookmark
|
387 |
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
|
388 |
+
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
|
389 |
logger.info("FAISS index built successfully with IDs")
|
390 |
+
return index
|
391 |
except Exception as e:
|
392 |
logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
|
393 |
raise
|
|
|
441 |
logger.info("HTML display generated")
|
442 |
return cards
|
443 |
|
444 |
+
def process_uploaded_file(file):
|
445 |
"""
|
446 |
Process the uploaded bookmarks file.
|
447 |
"""
|
|
|
450 |
|
451 |
if file is None:
|
452 |
logger.warning("No file uploaded")
|
453 |
+
return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
454 |
|
455 |
try:
|
456 |
file_content = file.decode('utf-8')
|
457 |
except UnicodeDecodeError as e:
|
458 |
+
logger.error(f"Error decoding the file: {e}", exc_info=True)
|
459 |
+
return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
460 |
|
461 |
try:
|
462 |
bookmarks = parse_bookmarks(file_content)
|
463 |
except Exception as e:
|
464 |
+
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
|
465 |
+
return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
466 |
|
467 |
if not bookmarks:
|
468 |
logger.warning("No bookmarks found in the uploaded file")
|
469 |
+
return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
470 |
|
471 |
# Assign unique IDs to bookmarks
|
472 |
for idx, bookmark in enumerate(bookmarks):
|
|
|
474 |
|
475 |
# Fetch bookmark info concurrently
|
476 |
logger.info("Fetching URL info concurrently")
|
477 |
+
with ThreadPoolExecutor(max_workers=20) as executor:
|
478 |
executor.map(fetch_url_info, bookmarks)
|
479 |
|
480 |
+
# Process bookmarks concurrently with LLM calls
|
481 |
+
logger.info("Processing bookmarks with LLM concurrently")
|
482 |
+
with ThreadPoolExecutor(max_workers=5) as executor:
|
483 |
executor.map(generate_summary_and_assign_category, bookmarks)
|
484 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
try:
|
486 |
+
faiss_index = vectorize_and_index(bookmarks)
|
487 |
except Exception as e:
|
488 |
logger.error(f"Error building FAISS index: {e}", exc_info=True)
|
489 |
+
return "Error building search index.", '', gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
490 |
|
491 |
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
|
492 |
logger.info(message)
|
493 |
|
494 |
# Generate displays and updates
|
495 |
bookmark_html = display_bookmarks()
|
496 |
+
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
497 |
+
for i, bookmark in enumerate(bookmarks)]
|
498 |
|
499 |
+
return message, bookmark_html, gr.update(choices=choices), bookmark_html
|
|
|
|
|
|
|
|
|
500 |
|
501 |
+
def delete_selected_bookmarks(selected_indices):
|
502 |
"""
|
503 |
Delete selected bookmarks and remove their vectors from the FAISS index.
|
504 |
"""
|
505 |
global bookmarks, faiss_index
|
506 |
if not selected_indices:
|
507 |
+
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
|
508 |
|
509 |
ids_to_delete = []
|
510 |
indices_to_delete = []
|
511 |
for s in selected_indices:
|
512 |
+
idx = int(s.split('.')[0]) - 1
|
513 |
+
if 0 <= idx < len(bookmarks):
|
514 |
+
bookmark_id = bookmarks[idx]['id']
|
515 |
+
ids_to_delete.append(bookmark_id)
|
516 |
+
indices_to_delete.append(idx)
|
517 |
+
logger.info(f"Deleting bookmark at index {idx + 1}")
|
|
|
|
|
|
|
518 |
|
519 |
# Remove vectors from FAISS index
|
520 |
if faiss_index is not None and ids_to_delete:
|
521 |
faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))
|
522 |
|
523 |
# Remove bookmarks from the list (reverse order to avoid index shifting)
|
|
|
524 |
for idx in sorted(indices_to_delete, reverse=True):
|
525 |
bookmarks.pop(idx)
|
526 |
|
527 |
message = "ποΈ Selected bookmarks deleted successfully."
|
528 |
logger.info(message)
|
529 |
+
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
530 |
+
for i, bookmark in enumerate(bookmarks)]
|
531 |
|
532 |
+
return message, gr.update(choices=choices), display_bookmarks()
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
+
def edit_selected_bookmarks_category(selected_indices, new_category):
|
535 |
"""
|
536 |
Edit category of selected bookmarks.
|
537 |
"""
|
538 |
if not selected_indices:
|
539 |
+
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
|
|
540 |
if not new_category:
|
541 |
+
return "β οΈ No new category selected.", gr.update(choices=[]), display_bookmarks()
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
+
indices = [int(s.split('.')[0])-1 for s in selected_indices]
|
544 |
+
for idx in indices:
|
545 |
+
if 0 <= idx < len(bookmarks):
|
546 |
+
bookmarks[idx]['category'] = new_category
|
547 |
+
logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
|
|
|
|
|
|
|
|
|
548 |
|
549 |
message = "βοΈ Category updated for selected bookmarks."
|
550 |
logger.info(message)
|
551 |
|
552 |
# Update choices and display
|
553 |
+
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
|
554 |
+
for i, bookmark in enumerate(bookmarks)]
|
555 |
|
556 |
+
return message, gr.update(choices=choices), display_bookmarks()
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
+
def export_bookmarks():
|
559 |
"""
|
560 |
Export bookmarks to an HTML file.
|
561 |
"""
|
|
|
562 |
if not bookmarks:
|
563 |
logger.warning("No bookmarks to export")
|
564 |
+
return None # Return None instead of a message
|
565 |
|
566 |
try:
|
567 |
logger.info("Exporting bookmarks to HTML")
|
|
|
575 |
dl.append(dt)
|
576 |
soup.append(dl)
|
577 |
html_content = str(soup)
|
578 |
+
# Save to a temporary file
|
579 |
+
output_file = "exported_bookmarks.html"
|
580 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
581 |
+
f.write(html_content)
|
582 |
logger.info("Bookmarks exported successfully")
|
583 |
+
return output_file # Return the file path
|
584 |
except Exception as e:
|
585 |
+
logger.error(f"Error exporting bookmarks: {e}", exc_info=True)
|
586 |
+
return None # Return None in case of error
|
587 |
|
588 |
+
def chatbot_response(user_query, chat_history):
|
589 |
"""
|
590 |
Generate chatbot response using the FAISS index and embeddings, maintaining chat history.
|
591 |
"""
|
592 |
+
if not bookmarks or faiss_index is None:
|
|
|
|
|
|
|
|
|
|
|
593 |
logger.warning("No bookmarks available for chatbot")
|
594 |
+
chat_history.append((user_query, "β οΈ No bookmarks available. Please upload and process your bookmarks first."))
|
595 |
+
return chat_history
|
596 |
|
597 |
logger.info(f"Chatbot received query: {user_query}")
|
598 |
|
599 |
try:
|
|
|
|
|
|
|
600 |
# Encode the user query
|
601 |
+
query_vector = embedding_model.encode([user_query]).astype('float32')
|
602 |
|
603 |
# Search the FAISS index
|
604 |
k = 5 # Number of results to return
|
|
|
610 |
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
|
611 |
|
612 |
if not matching_bookmarks:
|
613 |
+
answer = "No relevant bookmarks found for your query."
|
614 |
+
chat_history.append((user_query, answer))
|
615 |
+
return chat_history
|
616 |
|
617 |
# Format the response
|
618 |
+
bookmarks_info = "\n".join([
|
619 |
+
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
|
620 |
for bookmark in matching_bookmarks
|
621 |
])
|
622 |
|
623 |
+
# Use the LLM via Groq Cloud API to generate a response
|
624 |
prompt = f"""
|
625 |
A user asked: "{user_query}"
|
626 |
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
|
|
|
627 |
Bookmarks:
|
628 |
{bookmarks_info}
|
|
|
629 |
Provide a concise and helpful response.
|
630 |
"""
|
631 |
|
632 |
+
# Estimate tokens
|
633 |
+
def estimate_tokens(text):
|
634 |
+
return len(text) / 4 # Approximate token estimation
|
635 |
+
|
636 |
+
prompt_tokens = estimate_tokens(prompt)
|
637 |
+
max_tokens = 300 # Adjust as needed
|
638 |
+
total_tokens = prompt_tokens + max_tokens
|
639 |
+
|
640 |
+
# Calculate required delay
|
641 |
+
tokens_per_minute = 60000 # Adjust based on your rate limit
|
642 |
+
tokens_per_second = tokens_per_minute / 60
|
643 |
+
required_delay = total_tokens / tokens_per_second
|
644 |
+
sleep_time = max(required_delay, 1)
|
645 |
+
|
646 |
+
response = openai.ChatCompletion.create(
|
647 |
+
model='llama-3.1-70b-versatile', # Using the specified model
|
648 |
+
messages=[
|
649 |
+
{"role": "user", "content": prompt}
|
650 |
+
],
|
651 |
+
max_tokens=int(max_tokens),
|
652 |
+
temperature=0.7,
|
653 |
+
)
|
654 |
+
answer = response['choices'][0]['message']['content'].strip()
|
655 |
+
logger.info("Chatbot response generated")
|
656 |
+
time.sleep(sleep_time)
|
657 |
+
|
658 |
+
# Append the interaction to chat history
|
659 |
+
chat_history.append((user_query, answer))
|
660 |
+
return chat_history
|
661 |
+
|
662 |
+
except openai.error.RateLimitError as e:
|
663 |
+
wait_time = int(e.headers.get("Retry-After", 5))
|
664 |
+
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
665 |
+
time.sleep(wait_time)
|
666 |
+
return chatbot_response(user_query, chat_history) # Retry after waiting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
667 |
except Exception as e:
|
668 |
error_message = f"β οΈ Error processing your query: {str(e)}"
|
669 |
logger.error(error_message, exc_info=True)
|
670 |
+
chat_history.append((user_query, error_message))
|
671 |
+
return chat_history
|
672 |
|
673 |
def build_app():
|
674 |
"""
|
|
|
676 |
"""
|
677 |
try:
|
678 |
logger.info("Building Gradio app")
|
679 |
+
with gr.Blocks(css="app.css") as demo:
|
|
|
|
|
|
|
|
|
680 |
# General Overview
|
681 |
gr.Markdown("""
|
682 |
+
# π SmartMarks - AI Browser Bookmarks Manager
|
683 |
+
Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.
|
684 |
+
---
|
685 |
+
## π **How to Use SmartMarks**
|
686 |
+
SmartMarks is divided into three main sections:
|
687 |
+
1. **π Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
|
688 |
+
2. **π¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
|
689 |
+
3. **π οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
|
690 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
# Upload and Process Bookmarks Tab
|
693 |
with gr.Tab("Upload and Process Bookmarks"):
|
694 |
gr.Markdown("""
|
695 |
+
## π **Upload and Process Bookmarks**
|
696 |
+
### π **Steps:**
|
697 |
+
1. Click on the "Upload Bookmarks HTML File" button
|
698 |
+
2. Select your bookmarks file
|
699 |
+
3. Click "Process Bookmarks" to analyze and organize your bookmarks
|
700 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
|
702 |
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
|
703 |
process_button = gr.Button("βοΈ Process Bookmarks")
|
704 |
output_text = gr.Textbox(label="β
Output", interactive=False)
|
705 |
bookmark_display = gr.HTML(label="π Processed Bookmarks")
|
706 |
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
# Chat with Bookmarks Tab
|
708 |
with gr.Tab("Chat with Bookmarks"):
|
709 |
gr.Markdown("""
|
710 |
+
## π¬ **Chat with Bookmarks**
|
711 |
+
Ask questions about your bookmarks and get relevant results.
|
712 |
+
""")
|
713 |
+
|
714 |
+
chatbot = gr.Chatbot(label="π¬ Chat with SmartMarks")
|
715 |
+
user_input = gr.Textbox(
|
716 |
+
label="βοΈ Ask about your bookmarks",
|
717 |
+
placeholder="e.g., Do I have any bookmarks about AI?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
)
|
719 |
+
chat_button = gr.Button("π¨ Send")
|
720 |
|
721 |
# Manage Bookmarks Tab
|
722 |
with gr.Tab("Manage Bookmarks"):
|
723 |
gr.Markdown("""
|
724 |
+
## π οΈ **Manage Bookmarks**
|
725 |
+
Select bookmarks to delete or edit their categories.
|
726 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
|
728 |
manage_output = gr.Textbox(label="π Status", interactive=False)
|
729 |
bookmark_selector = gr.CheckboxGroup(
|
730 |
label="β
Select Bookmarks",
|
731 |
+
choices=[]
|
732 |
+
)
|
733 |
+
new_category = gr.Dropdown(
|
734 |
+
label="π New Category",
|
735 |
+
choices=CATEGORIES,
|
736 |
+
value="Uncategorized"
|
737 |
)
|
|
|
738 |
bookmark_display_manage = gr.HTML(label="π Bookmarks")
|
739 |
|
740 |
with gr.Row():
|
741 |
delete_button = gr.Button("ποΈ Delete Selected")
|
742 |
edit_category_button = gr.Button("βοΈ Edit Category")
|
743 |
export_button = gr.Button("πΎ Export")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
744 |
|
745 |
+
download_link = gr.File(label="π₯ Download Exported Bookmarks")
|
746 |
+
|
747 |
+
# Set up event handlers
|
748 |
+
process_button.click(
|
749 |
+
process_uploaded_file,
|
750 |
+
inputs=upload,
|
751 |
+
outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
|
752 |
+
)
|
753 |
+
|
754 |
+
chat_button.click(
|
755 |
+
chatbot_response,
|
756 |
+
inputs=[user_input, chatbot],
|
757 |
+
outputs=chatbot
|
758 |
+
)
|
759 |
+
|
760 |
+
delete_button.click(
|
761 |
+
delete_selected_bookmarks,
|
762 |
+
inputs=bookmark_selector,
|
763 |
+
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
|
764 |
+
)
|
765 |
+
|
766 |
+
edit_category_button.click(
|
767 |
+
edit_selected_bookmarks_category,
|
768 |
+
inputs=[bookmark_selector, new_category],
|
769 |
+
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
|
770 |
+
)
|
771 |
+
|
772 |
+
export_button.click(
|
773 |
+
export_bookmarks,
|
774 |
+
outputs=download_link
|
775 |
+
)
|
776 |
|
777 |
logger.info("Launching Gradio app")
|
778 |
demo.launch(debug=True)
|
779 |
except Exception as e:
|
780 |
+
logger.error(f"Error building the app: {e}", exc_info=True)
|
781 |
+
print(f"Error building the app: {e}")
|
782 |
|
783 |
if __name__ == "__main__":
|
784 |
build_app()
|